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Relationships Between Metacognitive Monitoring During Exams 
and Exam Performance in Engineering Statics 

 
INTRODUCTION 
  
Our NSF-DUE-funded project studies whether providing students with training and practice 
writing questions about their confusions in an undergraduate engineering statics course supports 
improved course performance and metacognitive awareness. Data collection for the project 
includes assessing multiple measures of students’ metacognition, including metacognitive 
monitoring during statics exams. In this current study, we focus exclusively on the monitoring 
data collected thus far.   
 
Metacognitive monitoring is the process of observing one’s understanding and approach while 
completing a learning task [1]. One way to assess students’ metacognitive monitoring is to 
measure students’ ability to accurately either predict or postdict their score on an assessment of 
their understanding [2], where postdiction refers to students assessing their expected score after 
completing a learning task. The mismatch between students’ confidence estimates and their 
actual performance is referred to as their level of calibration [3]. 
 
Prediction of exam performance prior to answering a question is an example of calibration of 
comprehension, as it requires a student to provide a confidence estimate of their ability to answer 
a forthcoming question, while postdiction is an example of calibration of performance, as it 
requires a student to provide a confidence estimate of the answer that they already provided to a 
question [4]. A benefit of using postdiction as a measure of calibration is that students’ estimates 
are not muddied by assumptions about or lack of familiarity with the expected learning task [4].  
 
Studies of students’ postdiction of exam performance have been carried out at the undergraduate 
level in a range of fields, including psychology [4-8], education [9], biology [10], physics [11], 
chemistry [12-13], and technology [14].  Studies that relate student performance to postdiction 
calibration generally find that higher-performing students are better calibrated (i.e., can more 
accurately estimate their score) than lower-performing students [4,6,7,9,10,12,14]. Further, 
students’ calibration accuracy does not appear to change from the beginning of a course to the 
end [4,6,9,12] unless specific interventions are employed to improve students’ metacognitive 
monitoring skills [8,11]. One exception to this trend may be students’ improvement from the first 
exam to a subsequent exam, which may be due to students’ increased familiarity with the exam 
format [12]. 
 
We are aware of limited examples of the study of postdiction calibration capabilities of 
undergraduate engineering students. Christensen et al. [15] used postdiction of exam 
performance as one of many metrics to evaluate student responses to statics exam questions that 
were either close to the course content that students studied or were more of a “stretch”. 
Goodmann and Isaacson [16] incentivized students to accurately identify the questions on 
circuits exams on which they performed the best. Baisley et al. [17] asked students to postdict 
their performance on mechanics exam questions by having students grade them using the same 
rubric as the instructors. They observed that students matched the instructor-determined grades 
less than 50% of the time. However, the rubric required students to discern between a “minor 



 
 

error,” a “minor logic error” and a “significant conceptual error,” such that poor performance on 
the calibration task may have been reflective of students’ inability to discern between these types 
of mistakes. 
 
In this study we will examine preliminary data collected in an engineering statics course to 
observe whether our students follow trends observed with postdiction calibration in other fields. 
Specifically, we are interested in determining if: 

1) High-performing students are better calibrated than low-performing students, and 
2) If student calibration improves from Exam 1 to Exam 2 but does not continue to improve 

from Exam 2 to the Final Exam. 
 
METHOD 
  
Data were collected from undergraduate engineering students enrolled in engineering statics 
during three semesters: Fall 2021, Spring 2022, and Fall 2022. The students for the present study 
were from a private university located in the northeastern region of the United States. The 
undergraduate engineering program at the university is small, allowing for small course sizes. 
One instructor taught all five of the courses included in the present study.  
 
Table 1. Summary of course characteristics.  
 
Semester Sections Students Enrolled Students Included in Study 

Fall 2021 2  35 27 

Spring 2022 1  26 13 

Fall 2022 2  37 30 

A total of 70 participants were included in the analyses, as shown in Table 1. Students who were 
enrolled in the courses but were excluded from the analyses are those who did not consent to 
have their data analyzed, did not complete all calibration responses, or were repeating the course.  
 
Content knowledge of the course material was assessed through scores on two exams (Exam 1 
and Exam 2) and a final cumulative exam (Final Exam). The exams administered each semester 
varied slightly to decrease the likelihood of students contaminating future students’ responses. 
All exams were graded on a 100-point scale and included on average three multi-step questions.  
 
Metacognitive monitoring was assessed through students’ calibration on each individual exam 
question. During the exam, students were shown how many points each question was worth. 
After answering each question on the exam, students were prompted to make a postdiction 
estimate for how many points they thought they would receive on that question.   
 
We calculated a calibration metric using an adaptation of the bias index described by Schraw [2]. 
Schraw’s bias index assumes student performance is scored as either correct or incorrect while 



 
 

confidence is reported on a scale from 1-100%.  In our case, performance and confidence are 
both measured using points out of a possible maximum value for each question. Therefore, we 
calculated the calibration for each exam question as the absolute value of the difference between 
their predicted and actual score, normalized by the number of points possible.  For example, a 
student who predicted a score of 20 points and earned 15 points on a 25-point question would 
indicate a calibration of 0.20.  We then averaged the question calibrations for each exam to 
calculate an exam calibration.  We also calculated a semester calibration by averaging the 
question calibrations across all exams.  By using the absolute value in these calculations, we are 
ignoring the directionality of students’ predictions (over- or under-estimation), so that over- and 
under-predictions do not cancel across questions – any error between students’ actual score and 
predicted score is maintained in the calculation.  A calibration that is closer to zero indicates 
better alignment between predicted scores and actual scores. 
 
RESULTS 
 
All statistical analyses were performed using JASP version 0.16.4 software. 
 
Descriptive statistics for the exam scores and calculated calibration scores are shown in Table 2 
below.  The range of scores on each exam shows the presence of very low scores in each case.  
Median scores higher than the corresponding mean score for each exam suggest a non-normal 
distribution of scores. 
 
Table 2. Exam score and calibration statistics.  
 
  Exam 1 

Score 
Exam 1 

Calibration 
Exam 2 
Score 

Exam 2 
Calibration 

Final Exam 
Score 

Final Exam 
Calibration  

Exam 
Average 

Semester 
Calibration 

Median 73.5 0.16 66.0 0.16 71.9 0.15 71.0 0.16 
Mean 66.0 0.18 64.9 0.16 68.1 0.16 66.5 0.17 
Std. Dev.  25.1 0.10 18.5 0.08 21.9 0.09 20.1 0.06 

Minimum 5.0 0.02 17.0 0.03 10.0 0.04 11.8 0.06 
Maximum 96.0 0.48 95.0 0.38 98.0 0.40 95.4 0.34 
 
To investigate the distributions further, we created dot plots shown in Figure 1. Visual inspection 
of the distribution of exam scores and calibrations for each exam suggest that they are not 
normally distributed.  Figure 1 also shows scatter plots of the exam calibration and exam score. 
The closer the exam scores are to 100, on average, the closer the calibration scores are to 0.  
 
To answer the question of whether there is a link between exam performance and calibration 
accuracy, we looked for correlations between actual and estimated scores for each exam. The 
non-parametric test, Spearman’s rho, was used for these analyses, given concerns about 
violations of normality. As shown in Table 3, there was a significant association between exam 
score and calibration, with higher exam scores linked to smaller (i.e., more accurate) calibration 
values. This was true for each of the three exams, and for the semester-wide exam average and 
average calibration. 



 
 

 
 
Figure 1. Dot plots showing the distributions of grades on each exam and overall semester 
scores are on the left. Dot plots for each student’s calibration scores on each exam and for the 
overall semester are in the middle. Scatter plots with a regression line displaying the correlations 
between each student’s estimated scores and actual scores are on the right.  



 
 

Table 3. Correlations between exam scores and calibration scores. 
  

  Spearman’s 
rho 

 
p 

Lower 
95% CI 

Upper 
95% CI 

Exam 1 Scores with      
Exam 1 Calibrations 

-0.594*** < 0.001 -0.728 -0.418 

Exam 2 Scores with 
Exam 2 Calibrations 

-0.454*** < 0.001 -0.622 -0.245 

Final Exam Scores with 
Final Exam Calibrations 

-0.503** < 0.001 -0.660 -0.304 

Exam Averages with 
Semester Calibrations 

-0.625** < 0.001 -0.750 -0.458 

* p < 0.05, ** p < 0.01, *** p < 0.001 
 
The plots in Figure 1 demonstrate these patterns in graphical form. Significant correlations were 
found between students’ exam scores and calibration scores, such that the greater a student's 
performance on an exam, the more accurately they can estimate their score. 
 
Additionally, using a median split to classify students as high- or low-performing (based on 
exam performance) showed that there was a clear difference in calibration between the groups. 
With 39 students classified as high-performing, and 31 classified as low-performing, 
independent t-tests indicated in all exams, the high-performing students on average had lower 
(i.e., more accurate) calibration scores than the low-performing students. See Table 4 for details. 
 
Table 4. Calibrations comparing low- and high-performing students. 
 
   

 
Mean 

Calibration 

 
 

Standard 
Deviation 

 
 
 

t (68) 

 
 
 
p 

95% CI for 
Cohen’s d 

Lower Upper 

Exam 1 
Calibration 

High-performing 
Low-performing 

0.14 
0.23 

0.08 
0.11 

-3.70 < 0.001 -1.381 -0.392 

Exam 2 
Calibration 

High-performing 
Low-performing 

0.14 
0.19 

0.01 
0.01 

-2.50 0.015 -1.082 -0.117 

Final Exam 
Calibration 

High-performing 
Low-performing 

0.15 
0.19 

0.01 
0.02 

-2.09 0.041 -0.979 -0.021 

Semester 
Calibration 

High-performing 
Low-performing 

0.14 
0.20 

0.01 
0.01 

-4.07 < 0.001 -1.476 -0.477 



 
 

To test the second research question, we ran a repeated measures ANOVA, comparing the 
average exam calibration across the three time points. Because of violations of sphericity, we 
used the Huynh-Feldt correction. This yielded a significant main effect F(1.961, 135.318) = 
1.247, p = 0.290, η2 = 0.018). Although we show a small trend of improved calibration after the 
first exam, the effect was so small that it was not significant. See Table 5 for details. 
 
Table 5. Repeated measures ANOVA within-subjects effects. 
 
 
Cases 

Sphericity 
Correction 

Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p 

 
η2 

Exam 
Calibrations 

Huynh-Feldt 0.016 1.96 0.008 1.247 0.290 0.018 

Residuals Huynh-Feldt 0.874 135.32 0.006    
 
DISCUSSION 
 
The finding that students who performed better on an exam were able to better postdict their 
performance is consistent with previous findings across multiple fields [4,6,7,9,10,12,14]. In 
particular, those students with stronger performance had much more accurate postdiction 
estimates. Consistent with previous findings [4,6,9,12], we did not find strong evidence of 
increased accuracy in postdiction performance over the course of the semester. 
 
The preliminary data we have collected indicates that postdiction calibration capabilities of the 
engineering statics students studied here follow trends observed in other fields. However, a 
number of limitations could affect these observations. First, the sample size in this study is fairly 
small. Specifically, we may find that the non-significant trend of improvement from Exam 1 to 
Exam 2 may become significant with a larger set of participants. More importantly, in analyzing 
the data it became apparent that the lack of a consistent definition for calculating calibration, 
combined with few known studies that measure performance and confidence scores as we have, 
leads to some uncertainty in analysis that may impact the outcome. For example, the difference 
in students’ postdictions and their actual exam performance can either be averaged across 
individual questions within an exam or summed for all questions in an exam. Further, these 
calculations can be performed either on the difference in the estimated and actual exam scores or 
on the absolute value of this difference. In future work we will explore how each of these choices 
affects the result of the analysis and discuss how making each choice should affect the 
interpretation of the result of the calculation.  
 
Finally, the data presented here are part of an ongoing larger study that involves a metacognitive 
intervention aimed at improving students’ question-asking abilities. The participants in this study 
included subjects from both the control group, who received no metacognitive intervention, and 
the intervention group. It is possible that the intervention impacts students’ metacognitive 
monitoring abilities, which are reflected in their ability to accurately postdict their exam 
performance. As more data are collected from students in both the control and experimental 
conditions, the impact of the intervention on calibration ability can be more rigorously assessed. 
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