2023 ASEE Annual Conference & Exposition

Predicting Team Function Using Bayesian and Cognitive Diagnostic Modeling Approaches

Presented at First-Year Programs Division (FYP) - Technical Session 6: Mentors & Teams

Team-based learning is commonly used in engineering introductory courses. As students of a team may be from vastly different backgrounds, academically and non-academically, it is important for faculty members to know what aid or hinder team success. The dataset that is used in this paper includes student personality inputs, self-and-peer-assessments of teamwork, and perceptions of teamwork outcomes. Using this information, we developed several bayesian models that are able to predict if a team is working well. We also constructed and estimated Q-matrices which are crucial in explaining the relationship between latent traits and students’ characteristics in cognitive diagnostic models. The prediction and diagnostic models are able to help faculty members and instructors to gain insights into finding ways to separate students into teams more effectively so that students have a positive team-based learning experience.

Authors
  1. Ms. Jing Ouyang University of Michigan [biography]
  2. Gongjun Xu University of Michigan [biography]
Download paper (974 KB)

Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.

» Download paper

« View session

For those interested in:

  • engineering
  • engineering technology
  • Faculty
  • undergraduate