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Abstract 

 

This theory paper describes challenges and opportunities with analyzing engineering 

curricula using the Curricular Analytics framework. We offer a data collection framework for 

systematically transforming engineering plans of study into network data at scale. Introduced 

by Heileman and colleagues in 2017, the Curricular Analytics framework enables researchers 

and practitioners to quantify the interconnectedness of their prerequisite structures to unveil 

gatekeeper courses and forecast the impact of curricular policies or changes using network-

analytic metrics. These metrics can be calculated using only available data; all one needs to 

do is transform a plan of study into a list of courses, prerequisites, and corequisites. However, 

larger projects that examine institutional, disciplinary, and temporal differences will likely 

face difficulties when wrangling with the details of diverse organizational contexts. This 

paper outlines the data entry processes developed by drawing from a research group’s 

Microsoft Teams communications for a National Science Foundation-sponsored project to 

explore decade-long trends in curricular complexity across institutions in the Multi-Institution 

Database for Engineering Longitudinal Development (MIDFIELD). We anticipate these 

suggestions will streamline data collection for similar large-scale projects that employ 

Curricular Analytics as their analytical approach in the future. 

 

Background 

 

Curricular Analytics involves quantifying a curriculum’s complexity to correlate its metrics 

with proxies for student success, often degree completion rates, to understand the relationship 

between curricular design or policy and student outcomes. To accomplish the quantification, 

we represent a plan of study outlining the coursework requirements a student must complete 

in order to earn a degree as a network. In the network, courses are represented as vertices (or 

nodes), and the prerequisite relationships among them are given by directed edges (arrows). 

This data type allows us to calculate a suite of metrics drawn from the pool of techniques 

developed in other fields, like social network analysis, that can help us capture “complexity” 

in some meaningful way. First appearing in its most recognizable form in work by Wigdahl 

as the idea of “curricular efficiency” [1], Heileman et al. [2] provide a thorough treatment of 

the possible quantities that form Curricular Analytics.  

 

Curricular complexity is divided into two components: instructional complexity and 

structural complexity [2]. Instructional complexity attempts to capture the latent factors of the 

curriculum, such as course difficulty and instructional quality, but it is currently only proxied 

by a course’s pass rate. Explicit advancements in the idea of instructional complexity are 

almost non-existent, with the exception of Waller, who reframed course difficulty using the 

concept of grade anomalies and found it to be a more robust metric than individual course 

DFW rates in his study of organizational factors’ impact on student success [3]. Structural 

complexity has been explored to a greater extent, likely because of the ability to access public 

data and construct simulations with relative ease [4]–[8]. Structural complexity is concerned 

with assigning a score to a curriculum based on the interconnectedness of program 

requirements (i.e., pre- and corequisites). 

 



 

   
 

Among the metrics proposed for structural complexity, two have become central to how 

complexity is calculated. These are visualized in Figure 1.  

 

 
Figure 1. Calculating course cruciality using the blocking and delay factor of the gray course 

 

The first metric is the blocking factor, which is found by counting the number of courses 

inaccessible to a student if the course is failed. The second metric is the delay factor, the 

length of the longest prerequisite chain flowing through the course. Adding these two values 

together yields the cruciality, a local measurement of how entangled a course is in the 

prerequisite structures of the plan of study and how essential it is to complete. The cruciality 

can be used to find potential bottlenecks, or gatekeeper courses, in the curriculum [6], [9]. 

For a global measurement, simply add all the crucialities together – this value is called the 

structural complexity of the curriculum. These global measurements can be used to compare 

curricula within and across different strata, such as majors within other colleges [4] or 

engineering disciplines [10]. Other efforts have also emerged to apply to connect curricular 

complexity with topic-level dependencies between courses [11], incorporate a probabilistic 

student flow approach [12], and extend the framework to be sensitive to transfer student 

issues [13], [14].  

 

Although the data requirements are minimal, there are distinct challenges to employing this 

framework across disciplines and institutions – especially if longitudinal analyses are 

planned. For example, curricula are not always completely defined, leaving space for students 

to select electives with varying degrees of flexibility. Without specifying these electives, the 

curriculum’s complexity may be underestimated. Moreover, there are deeper data entry 

considerations; prerequisites can often be a complicated series of ANDs and ORs, with 

language like “at least” or “X of the following.” These configurations do not lead to obvious 

network representations. Finally, finding accurate plan of study information, even for recent 

years, can be challenging. Prerequisite and course information can be inaccurate or may not 

have been appropriately maintained by the appropriate institutional office. As Curricular 

Analytics is applied more broadly, reflecting on current practices and considering how this 

framework can be expanded to capture more nuanced curricular representations is valuable. 

 

Research Aim 

 

This paper recounts the obstacles encountered during the data collection process for a 

longitudinal multi-institution project employing Curricular Analytics and offers the data 

conventions we developed to overcome those obstacles. We outline these procedures not only 

for transparency, but also to assist other researchers and practitioners who want to use the 



 

   
 

Curricular Analytics framework at scale. Given the lack of formal guidance on handling plan 

of study data for broader projects, we contend this work can become a resource to fill the 

current gap in standard practices for proper data entry to analyze curricula.  

 

Drawing Insights from a Broader Longitudinal Project on Curricular Complexity 

 

This work is derived from a larger project focused on quantifying plans of study for five 

engineering disciplines (Civil Engineering, Electrical Engineering, Mechanical Engineering, 

Chemical Engineering, and Industrial Engineering) to compare the complexity of such 

programs across the United States. The sampling frame, in this case, was the Multi-Institution 

Database for Engineering Longitudinal Development (MIDFIELD) [15]. Data collection for 

the larger project was completed in January 2023. In Fall 2022, five undergraduate research 

assistants in the College of Engineering and Applied Science and a PhD student in 

engineering education entered data from course catalogs over the course of a decade from the 

most recent record for thirteen schools in MIDFIELD, resulting in 494 plans of study. To 

facilitate team communication and data quality checks, we used a channel in Microsoft 

Teams. The research team was encouraged to talk with one another and ask questions if they 

ran into issues during data collection.  

 

One of the major outputs of the NSF project is an R package that will allow other researchers 

to interact with the dataset we created and use more customized functions to explore different 

dimensions of curricular complexity. R is also open source, making the platform and package 

more accessible to the community. We chose to write our package in R because of the 

existing packages for analyzing data from MIDFIELD, namely midfieldr [16] and 

midfielddata [17]. The midfieldr contains ready-to-go functions for properly processing data 

at the student level, and the second package is a stratified random sample from MIDFIELD 

for users to practice on and explore. The data produced from this project will be made 

available in a similar format. We anticipate the output synergizing with the broader goal of 

expanding access to and participation in MIDFIELD’s development [18]. 

 

Data Collection 

Although originally intended for project communication alone and standardization to ensure 

process reliability [19], we found our Microsoft Teams chats to be a valuable source of 

practical issues that other teams might encounter when conducting a similar project. The data 

source for this work was the set of chats from our team’s communication regarding data entry 

within the platform, Microsoft Teams. Due to licensing policies with the university-

sponsored Microsoft Teams account, it was not feasible to export all the chats in the channel 

through a request to the university IT department. Instead, after expanding all chats to ensure 

longer messages and pictures were not cut off, the Chrome plugin GoFullPage created a pdf 

of the channel using the web-browser version of Teams. One minor inconvenience of this 

method is that the resulting pdf was not searchable, meaning that all relevant questions 

needed to be labeled by hand and referenced by number using a spreadsheet. After filtering 

out non-data entry questions (e.g., questions about submitting timesheets or meeting time 

updates), we were left with 88 questions.  

 

Analysis 

We employed descriptive coding to split the questions into categories where similar or 

repeated questions could be grouped [20]. To create more generalized questions that removed 

specific institutional context, questions within each category were processed using the 

constant comparative method [21] to consolidate similar inquiries into one unique question. 



 

   
 

The research assistants, both undergraduate and graduate, who entered the data in Fall 2022 

were involved in the synthesis of these generalized questions, and their perspectives shared in 

weekly meetings were used as peer debriefing [22]. Among these questions, we selected the 

inquiries related to general data entry and created a flowchart to summarize a process for 

entering curricular data in similar projects.  

 

A General Process for Collecting and Extracting Plan of Study Data 

 

Through our data collection processes in Fall 2022, including the discussions and questions 

posed during data entry, we have assembled the following considerations for collecting plans 

of study for use with the Curricular Analytics framework. These considerations include 

methodological issues and general process inconsistencies that can emerge. We divided it 

into three components: pre-processing (Figure 2), processing (Figure 3), and post-processing 

(Figure 4). In pre-processing, we made a pdf of the source material, such as the website or 

catalog page, using the naming convention: 

InstitutionName_CatalogYear_DisciplineName_POS.pdf. For the data file, we used the 

convention, InstitutionName_CatalogYear_DisciplineName_Base.csv, for the specified 

courses and InstitutionName_CatalogYear_DisciplineName_Elective.csv for electives. The 

CatalogYear will be whatever year range is on the title of the catalog. For example, if the 

catalog year is 2021-2022, then the CatalogYear will be 2122. The pre-processing step 

considers cases where summer or winter terms appear and if courses are not assigned to terms 

or semesters (such as by year). The processes in Figure 5 handle data processing, including 

the conventions we established earlier for nontrivial prerequisite structures, embedded labs, 

and additional enrolment requirements. In Figure 6, we clean up any loose ends by checking 

for mutual corequisites and sorting courses without term assignments because courses were 

not specified by semester by rebalancing courses free to move until credit hour distributions 

fall between the minimum to be enrolled and below the maximum.  

 

In the next sections, we will elaborate on the data collection and entry questions that we 

encountered during Fall 2022 by splitting up the discussion into pre-processing, processing, 

and post-processing – which will map to our flow diagram. 

 



 

   
 

 
 

Figure 2. Pre-processing before entering data for a plan of study 



 

   
 

 

Figure 3. Processing data while 

performing data entry 
 



 

   
 

 
Figure 4. Post-processing after completing entry 

 

Pre-Processing Step 

Most pre-processing considerations were related to how the plans of study were organized. 

Therefore, questions centered on situations where the plans of study were not designed term-

by-term, such as a year-by-year schedule or a simple list of courses with no prescription of 

when they should be taken.  

 

Summer and Winter Terms. There were situations during our data collection process where a 

course was specified to be taken during a Summer or Winter term. A simple solution is to 

treat the extra term just like a Fall or Spring session and count the terms normally. 

Alternatively, and what is used in the R package in development, is the convention of 1 = 

Fall, 2 = Spring, 3 = Summer, 4 = Fall, 5 = Spring, 6 = Summer, and so on. Similarly, for 

Winter terms, 1 = Fall, 2 = Winter, and 3 = Spring. This convention makes it more visually 

obvious that a Summer term is incorporated and allows us to calculate metrics that 

incorporate limited offerings into our calculations [13], [14]. However, by labeling the terms 

using the explicit Summer term, we inevitably cause issues when calculating term-weighted 

metrics. To accommodate the labeling convention, the package automatically adjusts for the 

empty terms by discarding them and renumbering the terms.  

 

To record plan of study level assumptions, notes about Summer courses like what is 

discussed in this section were entered into a dataset-level Word document. Upon completion 

of data collection, this Word document serves as a manual for the dataset allowing other 

researchers to understand how the individual plans of study were created – increasing 

research transparency.   

 

When Plans of Study Are Not Organized by Term. Occasionally, a plan of study will not 

specify when a course is taken and may only provide the year or simply a list of courses. 

Questions about this occurred more frequently early in data collection: 

• The sections are according to years, not semesters. What do I do about this? 



 

   
 

• There's an extra summer semester in which they take 12 credits of electives. What do I do 

about this? 

• And I've also made quite a lot of such assumptions for the 3 years of [INSTITUTION], they 

didn't have a semester by semester breakdown too. Where do I document every assumption I 

made? In the same row as the course where I made the assumption? 

 

For this, we would suggest first entering all the required courses and prerequisite information, 

then organizing courses term by term based on the prerequisite relationships. That is, start 

with a course that has prerequisites and build out sequentially until the chain of requirements 

is exhausted (e.g., starting at Calculus III and working back to Calculus I). Alternatively, if 

the plan of study is organized by year, you can assign a temporary year column and order the 

courses by term within that window using prerequisite information (e.g., if year two requires 

Statics and Strength of Materials, Statics should go in the first term of year two because it is a 

prerequisite for Strength of Materials). Other courses can be unassigned a term until the more 

“immobile” courses are entered into the plan of study.  

 

To form coherent plans of study, using credit hour loads to check the reasonability of a 

configuration is advised. If the number of credits is too small, then the student will not have 

full-time status. If the number of credits is too large, then the student would possibly incur 

overload charges. Move around less connected courses before adjusting the timing of courses 

in denser prerequisite structures. Some catalogs provide information on when the courses are 

offered, which can provide a clue to the researcher where the student is most likely to take the 

course in question. If not, searching the course on a website like Coursicle provides the recent 

semesters it was offered.  

 

The Value Add in Term-Weighting Structural Complexity. Although we spent a good 

amount of effort checking the reasonability for the plan of study dataset, term numbers do not 

add additional information to the typical calculations in these models. Instead, they are used 

to create a more informative and readable visualization. However, as this research strand 

develops, knowing when courses occur will become more relevant for alternative metrics. For 

example, if one would like to analyze a curriculum from a transfer student’s perspective, 

knowing which term they enroll would be a critical piece of information, which would be 

matched up with the relevant courses. Moreover, DeRocchis et al. introduced the idea of 

term-weighted structural complexity [23]. The concept involves multiplying the cruciality of 

a course by the term it occupies, which punishes courses that are part of dense prerequisite 

structures later in the curriculum. Researchers should consider exploring the weighted and 

unweighted structural complexity to parse the value-add of the term information.  

 

Processing Step 

Once data entry has begun, there are a few considerations necessary to consider. First is the 

question of electives. From a data collection perspective, the original conceptualization of 

Curricular Analytics suggests treating electives as generic courses without prerequisites. 

However, we offer an alternative perspective for enabling the study of variable pathways 

through a plan of study. Moreover, after discussing how electives were handled, we’ll discuss 

salient issues with representing different types of pre- and corequisite relationships in the 

plan of study data.  

 



 

   
 

Representing Electives. When entering courses 

into a plan of study, different types of electives are 

likely required, such as general education courses 

and major-specific courses. Questions about 

different kinds of electives were common in our 

chats and became more intricate as more 

specialized arrangements were observed:  

• For [INSTITUTION] in the second semester of 

senior year there are many courses with no 

credit hours, how should I enter these? 

• When it gives the student the option between 

choosing classes, how should we show this? 

[INSTITUTION] for a major in Electrical 

Engineering gives students the option to 

choose a concentration. 

• I already have an option for taking 2 classes 

and was wondering what I should do with that. 

• For a base course with no other options but 

varying course credits, what should we do? 

 

Unfortunately, applications of curricular 

complexity do not explicitly address how one 

would incorporate student choice at such a level in 

the Curricular Analytics model. The most 

common way of representing electives is to simply 

leave the course unspecified and name it 

according to the elective type, such as “Gen Ed” 

or “Tech Elective.” Because the course is not 

specified, there is no prerequisite or corequisite 

information entered as well. Thus, the plan of study 

captures the base complexity as envisioned by the 

faculty, which does not align with how a researcher 

may casually discuss the complexity of the curriculum using this framework.  

 

A more complete picture of a plan of study’s complexity can be obtained by splitting the data 

into two pieces, one “base” spreadsheet and one “elective” spreadsheet. The base spreadsheet 

will capture the name of the elective group, a short form title for the course code/number 

(e.g., TECH XXXX), and the term it is taken. The elective spreadsheet captures exactly what 

a researcher would normally enter when applying the Curricular Analytics framework, 

including the actual course name, course code/number, prerequisites, corequisites, credit 

hours, and any additional notes. When giving an elective a name, ensure it reflects the type of 

elective. For example, suppose there are two types of technical electives that students need to 

choose called Depth electives and Breadth electives. In the elective spreadsheet, we would 

copy the list of courses under these electives and create a new column that associates the 

courses with their elective group. The elective spreadsheet will serve as a pool of possible 

courses to pull from to estimate the expected structural complexity when we factor in student 

choice with electives. The algorithm for estimating the cruciality for each elective is given in 

Figure 5. 

 

Figure 5. An algorithm for estimating the 

structural complexity to incorporate student 

choice in electives 



 

   
 

Using the base plan of study and elective list, we create all possible permutations of courses 

and store them in a list. In R, the data can be stored like so: 

 

configurations <- list(c('ENGR 100','ENGR 101','ME 100'),c('ENGR 100', 'ENG

R 101', 'ME 191')) #only first two entries shown 

Note that there will be repeated entries as individual courses are swapped out to form a new 

configuration, but repeated entries where a course simply switches spots with another are 

discarded. Once the list is generated, use a for loop to run through all the configurations. 

Check if the configuration is valid, meaning that prerequisite and corequisite relationships are 

not violated. If it is not valid, rearrange the courses into different elective slots on the base 

plan of study. If the plan of study is valid, then the cruciality of each elective is calculated. 

Store those in an atomic vector or data frame to keep track of the values for each 

configuration. Once a passable arrangement is found, we will move on to the next 

configuration. At the end of the loop, take the mean of the individual elective crucialities to 

estimate the expected cruciality. Add the estimates to the base structural complexity to yield 

the expected structural complexity.  

 

The resulting adjusted value now incorporates the ability for students to choose a subset of 

their courses. We plan to integrate this functionality into our R package to perform the 

necessary analysis.  

 

Nontrivial Prerequisites. Although many courses will have simple prerequisite structures that 

do not require special treatment, there are more complicated relationships that can be 

decomposed such that they are representable in the network. These questions were frequent in 

our discussions, a selection of which are below:  

• This has nested "Or" options is there a good way to show this in the excel files?  

• How should we show prerequisites like this given that there are "Or" + "And"? Should I just 

list them all and separate them with a comma? 

• Also, I just saw that there was a prereq where you could take two classes from a "this or that". 

How should I work that into the prereq chain? [Note: “this or that” refers to a configuration 

where a student can pick one of two courses to satisfy a requirement.] 

• MATH 160 is the first math course with MATH 161 and 261 coming in [later, and] some 

courses have prereqs like this: MATH 160 or MATH 161 or MATH 261, In this case, what do 

we write down as prereqs? 

• For this it says 6 of the 7 courses, what should I do about this? 

• This senior design class has a [bunch] of prereqs, and some of the are in a this or that in the 

POS. For example[,] GEEN 1400 is a prereq for the senior design class but you can choose 

between GEEN 1400 and ASEN 14000 or ECEN 1400 in semester 1. Should I keep the this 

or that and put the elective course in the prereq section or just choose GEEN 1400 as the only 

class you take? 

 

Curricular Analytics implicitly assumes that courses have a simple “AND” configuration to 

describe prerequisites; for example, MATH 101 AND MATH 102 are required for ENGR 

105. However, for certain courses, these configurations can involve “ORs” that are also 

nested within “ANDs,” such as (MATH 101 OR MATH 101H) AND PHYS 101. These are 

often combined with grade cut-offs, such as “Min Grade C-.” Last, some courses have 

prerequisite structures that offer a list of courses and require that the students have passed a 

subset of them using language like “at least” or “X of the following.” None of these situations 



 

   
 

are addressable in Curricular Analytics as currently defined, except that it is acknowledged 

on the FAQ page of the tool’s website that OR relationships tend to be irrelevant [24].  

 

To help explore whether these are indeed factors needed in curricular complexity, we 

introduce the following notation in Table 1 to enter the data as they are shown in course 

catalogs. As the framework evolves, we foresee the estimates of structural complexity to be 

an average of different scenarios. Our next steps involve incorporating the functionality in 

our R package to calculate the structural complexity for different configurations.  

 

Table 1. Notation for prerequisite structures 

 

Prerequisite Type Notation Example 

AND When a list of courses must be 

completed, each one is separated by a 

comma. 

MATH 101, MATH 102 

OR When the option between 

prerequisites is given, we use the + 

symbol. 

MATH 101 + MATH 102 

Both Logical 

Connectives 

Combine the comma and + notation 

to represent the prerequisite structure. 

Use parentheses to group. 

(MATH 101 + MATH 102), 

MATH 103  

Subset of Course Use the keyword FROM and list the 

courses followed by the number of 

courses to consider in brackets. 

FROM(MATH 101, MATH 102, 

MATH 103)[2] 

Minimum Grade Use the keyword MINGRADE, name 

the course and insert the minimum 

grade in brackets 

MINGRADE(MATH 101)[C-] 

Other Requirements These can be copied verbatim into a 

“notes” column 

“Math placement exam score of 

80% or better.” 

 

We are currently experimenting with this notation, so to transform back to the original 

version – using purely AND connectives, we would convert all “+” to “,”, remove all 

parentheses, and extract the courses inside the FROM and MINGRADE notation. Next, any 

courses that do not appear would be removed from the list of requisites. This approach would 

match how a researcher would conventionally enter the data. Starter R script is provided in 

Appendix A to accomplish the transformation. 

 

Hidden Laboratory Coursework. Engineering curricula include laboratory-focused courses 

to allow students to apply principles from lecture to physical systems, and their realization in 

the curriculum can vary. We observed that plans of study would either have a specific 

laboratory course with a corequisite relationship to the lecture course, describe a laboratory 

experience that is mentioned by course name and number, or describe an integrated 

laboratory experience with no distinct course at all. Questions would emerge related to how 

these could be handled, for example:  

• How should I show labs for a class that has the labs "baked in" with the class? 

• If there is a recitation class, should I include it even if it doesn[‘]t show as a coreq and it has 

no credits? 

• Some classes have recitation some don't, I wasn't sure if we wanted to call that out. The way 

labs for EE classes are listed is the same as above. No course name or number and no mention 

in the POS other than what comes up when you go to look at the prereqs and coreqs. 

 



 

   
 

We found it helpful to untangle these hidden laboratory requirements by creating a course 

with zero credit hours with a corequisite relationship with the lecture course to unveil the 

additional burden on students that they create. In our view, bundling the lecture and 

laboratory can underestimate the true structural complexity because credit hours are not 

factored into the calculations at all. This convention we adopted placed all courses with labs 

on the same footing.  

 

Determining Corequisite Relationships. The measures in Curricular Analytics rely on the 

idea of a directed acyclic graph, a type of network where none of the directed edges form a 

cycle. In other words, by following the edges from vertex to vertex, you will never be able to 

revisit a vertex. These curricular graphs are directed acyclic graphs by design because 

prerequisite and corequisite relationships naturally build on one another. It would not make 

sense for a course taken later in the curriculum to be a prerequisite for a course in a previous 

term; thus, there is no reasonable potential for a cycle to form. However, there is one 

exception - mutual corequisite relationships. For example, we have seen cases where a course 

and its laboratory section list one another as corequisites. The courses then form a cycle, 

which makes calculating the delay factor impossible. But the redundancy is not needed, so it 

is more sensible to only have one edge connecting the two.  

 

Deciding the direction of the corequisite relationship is a nontrivial decision, which came 

about when the validity of the plan of study data was being evaluated. To illustrate why, 

consider the simplest possible configuration where the distinction is evident: Course A is a 

corequisite with Course B, and Course B is a prerequisite for Course C. If we have the 

corequisite relationship defined as Course B points to Course A, we can calculate the 

structural complexity to be 8. Next, by simply changing the direction of the corequisite 

relationship, we see the structural complexity rise to 12 – an increase of 50%! This is 

troubling because we did not change anything fundamental about the prerequisite 

relationships; the interpretation is the exact same – Courses A and B are intended to be taken 

together. However, the direction of the relationship has a significant impact on the course 

crucialities and the overall structural complexity as a result.  

 

Why does this occur? The issue lies in the calculation of both the blocking factor and delay 

factor. When we change the direction of the corequisite relationship, we create a different 

path for requisite relationships to flow. As a result, the delay factors change for all three 

courses. In the first configuration, Course A does not have any paths out of the vertex but is 

connected to Course B, so its delay factor is 2; it also does not block any courses, so its 

blocking factor is 0. However, once we switch the direction of the edge, suddenly Course A 

becomes part of the prerequisite chain formed by Course B and Course C. This changes all 

the delay factors for A, B, and C to 3 and increases Course A’s blocking factor to 2.  



 

   
 

 
Figure 2. Illustrating the impact of changing the direction of a corequisite relationship (in 

blue); one change in directionality changes structural complexity by 50%; b(.) is the blocking 

factor and d(.) is the delay factor 

 

The researcher must be consistent with defining the corequisite relationships to ensure the 

complexity values are internally consistent. If a convention for directionality is not 

universally applied in a dataset, then the comparability among plans of study is questionable.  

We could argue for either configuration, and we believe it is immaterial which orientation is 

chosen; it is critical that the assumption made about directionality should be reported, at least.  

 

Another way to circumvent this decision is to ignore corequisite relationships when 

calculating the delay and blocking factors; one could argue that corequisite relationships are 

not as strict as prerequisites, and providing them with equal weight might misrepresent the 

complexity of a given plan of study. The advantage of ignoring the corequisites when 

calculating the blocking and delay factors is that the solution will be unique, but that 

uniqueness will come at the cost of model completeness.  

 

Post-Processing Data 

After completing data entry, it is crucial to check for accuracy in some fashion. This will 

involve checking for logical curricular arrangements, ensuring all courses are assigned to a 

term, and courseloads are reasonable as a result.  

 

Illogical Arrangements and Inconsistencies. Occasionally, there will be instances where a 

configuration in the plan of study results in an illogical arrangement of prerequisites or 

corequisites, as evidenced in the following sample of questions: 

• Corequisites in different terms: There is a course that is calling for a coreq but the course it 

wants as a coreq is listed under a previous year. Should I place it as a prereq instead? 

• Prerequisites not in the plan of study because of course changes: For 14-15, there is as 

course ME 221 that prereqs ME 210: Statics of Mechanic. But, this course isn’t the POS, 

instead there is EM 214: Statics. For 16-17, EM 215 was the prereq for ME 221. Do I assume 

this as a typo? 

• Missing courses/credits: For the same POS, the total sum of the credits is given as 128, but is 

actually 129. And, there are 3 credits missing.  

Notice that these are not necessarily data entry errors and are inherent to the source 

document. Also, though not mentioned in our chats, upon inspecting plans of study for 

logical arrangements, an error that occurred was accidentally listing a corequisite as a 

prerequisite – which would create a theoretically impossible structure.  

 



 

   
 

Other issues can appear as well, so it is critical to note where potential errors have occurred. 

We contend these inconsistencies emerged because of our longitudinal scope, introducing 

situations where courses become defunct and are replaced with a new offering or sets of 

offerings, but this change does not become fully represented in the plan of study or catalog. 

During data entry or post-processing, it is suggested that researchers check for illogical 

arrangements, particularly with prerequisites in the same term and corequisites in different 

terms, against the original plan of study. If it is indeed the intended arrangement, add a note 

on the same line in the spreadsheet. If not, make the necessary adjustment. 

 

Contributions to Theory in Curricular Analytics  

 

We contend that this work advances the theory and application of Curricular Analytics in 

engineering education research in three distinct areas, (1) establishing a process for 

systematic data collection, (2) extending how researchers can account for multiple pathways 

in terms of electives, and (3) encouraging exploration in the impact of different curricular 

policies with more detailed data. 

 

Establishing a Process of Systematic Data Collection 

As of writing, there is little to no guidance for how a research team would collect data for 

Curricular Analytics at scale. We have illustrated through our findings in this paper that 

entering plan of study data across departmental, institutional, and temporal contexts carry 

heavy implications in terms of assumptions that must be made to achieve the desired 

formatting. Prerequisite and corequisite relationships are often not logically simple - that is, a 

set of courses that must all be taken to enroll in the course. Instead, prerequisites can have 

both AND and OR logical connectives (e.g., (MATH 101 and MATH 102) or (MATH 

103H)), subsets of a longer list of approved courses (e.g., three of the following: ....), 

minimum grade requirements (e.g., MATH 101 with min C-), or a combination of all three. 

We are hopeful our conventions will help researchers achieve a higher level of consistency 

and rigor in their analyses.  

 

Conceptualizing a Broader View on Curricular Complexity Data 

Second, this work can advance how future researchers think about a broadened perspective of 

a plan of study’s complexity. One potential critique that can be made of how data are 

typically entered for studies on curricular complexity is the simplification of electives down 

to single generic courses, washing out student agency in choosing their own pathway. Also 

arising from this research, and the broader literature, is student diversity resulting in varied 

levels of preparedness – which impacts what courses students ultimately end up taking before 

the prescribed coursework. Finally, we can consider how different requirements can carry 

unequal impacts in practice but are not treated as such in the analyses. We will briefly discuss 

these three points.   

 

Curricular Complexity from Electives. For general education courses and other requirements 

that are mostly independent of the major-specific courses, specifying these has little impact 

on the structural complexity metrics. They are often labeled as “Gen Ed” or some equivalent 

and left without prerequisites or corequisites.  

 

However, applying the same treatment to major-specific electives is less defensible 

analytically. Often upper-division courses that serve as electives have prerequisites, which 

are lost when they are aggregated into a generic “Tech Elective” category. Yet, incorporating 

the electives into the plan of study directly poses a different problem. We could specify the 



 

   
 

most common sets of electives students take, but this decision would ignore the students’ 

agency afforded to them by the premise of these elective courses. On the other extreme, we 

could create a plan of study for every possible pathway, but this would be a tedious data entry 

task. Our proposed algorithm for estimating an average structural complexity can enable 

broader discussions on how students navigate the courses they have more control over and 

capture the curriculum’s complexity more completely.  

 

Curricular Complexity from Varied Entry Points, such as Calculus-Readiness. Building 

from our observations regarding nontrivial prerequisite structures, we found these most often 

occur with courses in the first year. Such prerequisite structures result from attempts to 

account for diverse offerings of mathematics courses to reflect differences in students’ 

academic preparation. Some requirements span beyond coursework, including minimum SAT 

and math place scores – which we observed in our sample. When constructing the plan of 

study, the standard operating procedure was to only consider courses in the plan of study. 

However, to consider student’s diverse pathways into the curriculum, researchers may 

consider incorporating the mathematics prerequisite structures that form the pre-calculus 

block of offerings. Data from Pirkey and Santiago [25] show retention statistics for students 

in engineering at West Virginia University, revealing that 29% percent of students were not 

Calculus-ready and an overwhelming majority of students in their second semester were 

enrolled in Trigonometry. The prevalence of non-Calculus-ready students raises additional 

questions about how we represent the situation in Curricular Analytics, especially considering 

being Calculus-ready in the first semester is a significant predictor of completing an 

engineering degree [26]. There are opportunities to analyze not only the expected pathway for 

the average first-time-in-college student but also for students who do not have the necessary 

math background to start in the intended mathematics course. 

 

The notation in Table 1 can help facilitate such analyses if that is the researcher’s intent. 

Otherwise, the notation can be converted to the standard form and analyzed normally. Only 

courses that appear in the list would be incorporated into the construction of the prerequisite 

structure in our R package.  

 

Our suggestion in this theory paper is a two-staged data collection process that balances the 

desire to calculate the complexity of a curriculum using available data and incorporate 

student agency into the analyses. When we do not incorporate student agency, meaning we do 

not specify elective courses or pathways, we are not calculating the true structural complexity 

of the curriculum. We are calculating the expected base structural complexity of the 

curriculum as envisioned by the faculty. By base, we are referring to the set of courses and 

their prerequisites that are specified as required by the faculty in the plan of study. We add 

the qualifier “expected” because students have agency over the base structural complexity as 

well – not just electives – through transfer credit, AP credit, and exceptions. Thus, by 

reframing how we think and talk about structural complexity, albeit slightly, we can be more 

precise in its theoretical and practical applications.  

 

Incorporating Different Requirement Types into the Analysis. Finally, through reviewing 

our data collection process questions, it was recognized how diverse requirements could be at 

different institutions. However, this diversity is not reflected in Curricular Analytics. 

Currently all requisites are treated equally analytically, but these requirements can have 

vastly different impacts. For example, the minimum grade requirement (i.e., a stricter 

prerequisite type than the typical relationships specified in plans of study) is undoubtedly a 

structural barrier that students must overcome, but it carries no analytical weight when 



 

   
 

calculating structural complexity. The minimum grade requirement is most closely associated 

with the blocking factor because it is an additional barrier to progress into the next set of 

courses, so perhaps it would be sensible to incorporate it into the metric. Alternatively, a 

different metric might be necessary because the minimum grade requirement can be 

considered a condition of the edge (i.e., the prerequisite) and not the vertex. Another 

possibility is to build the subnetwork of courses impacted by a minimum grade requirement 

and find the structural complexity of that course set. This strategy would allow one to view 

the set of courses impacted by a specific policy. We do not have a strong sense of which 

would be most appropriate without some further experimentation. However, we encourage 

the community to continue their own explorations with these ideas. 

 

Conclusion 

 

We expect that our work will prove valuable to scholars and professionals interested in 

carrying out systematic assessments of educational programs, particularly in conjunction with 

student information, to investigate issues concerning the retention of FTIC and transfer 

students. This paper provides some standardized procedures and data conventions to examine 

curricula comprehensively using network analysis. With the expansion of Curricular 

Analytics, we anticipate that the community will better understand the obstacles that hinder 

the academic progress of engineering students across the country.  
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Appendix A: R Script to Convert Data Using Our Introduced Conventions to the 

Original Form for Curricular Analytics 

 

#This function takes in the columns for the pre- and corequisites  

#and removes the supplementary information in our suggested notation 

#such that it will work with the conventional functions for  

#Curricular Analytics 

ConvertToOriginalNotation <- function(RequisiteStructure) { 

  #Replace all ORs (+) with ANDs (,) 

  RequisiteStructure <- gsub("\\+", ",",RequisiteStructure) 

  #Remove the parentheses 

  RequisiteStructure <- gsub("[()]", "", RequisiteStructure) 

  #Begins removing the notation for MINGRADE and FROM. 

  RequisiteStructure <- gsub("FROM|MINGRADE", "", RequisiteStructure

) 

  #Remove notation for MINGRADE and FROM. 

  RequisiteStructure <- gsub("\\[.*?\\]", "", RequisiteStructure) 

  #Return the courses with the original notation. 

  return(RequisiteStructure) 

} 

 

#Apply the function to each of the courses in the prerequisite and 

# corequisite columns. 

ConvertedRequisites <- sapply(RequisiteStructures,  

      ConvertToOriginalNotation) 

 

 

 

 


