
Paper ID #38467

What to Teach First, Hardware or Software? Improving Success in
Introductory Programming Courses

Dr. Richard Whalen, Northeastern University

Dr. Richard Whalen is a Teaching Professor at Northeastern University in Boston, MA and is Director
of First-year Engineering. The mission of the First-year Engineering team is to provide a reliable, wide-
ranging, and constructive educational experience that endorses the student-centered and professionally-
oriented mission of the University. He also teaches specialty courses in the Department of Mechanical
and Industrial Engineering at Northeastern and has published and presented papers on approaches and
techniques in engineering education.

Dr. Joshua L. Hertz, Northeastern University

Dr. Hertz earned a B.S. in Ceramic Engineering from Alfred University in 1999 and then a Ph.D. in
Materials Science and Engineering from the Massachusetts Institute of Technology in 2006. Following
this, he worked at the National Institute of Standards and Technology as a National Research Council
postdoctoral fellow. He joined the Department of Mechanical Engineering at the University of Delaware
as an Assistant Professor in September 2008, leading a lab that researched the effects of composition
and nanostructure on ionic conduction and surface exchange in ceramic materials. In 2014, he moved
to Northeastern University to focus on teaching and developing curriculum in the First Year Engineering
program.

©American Society for Engineering Education, 2023

What to Teach First, Hardware or Software? Improving Success in
Introductory Programming Courses

Abstract

This complete evidence-based practice paper presents an analysis and lessons learned in
introductory engineering courses with content that includes problem-solving, algorithmic thinking,
the use of microcontrollers, and C++ at a medium-sized private urban university. These courses
specifically incorporate the integration of hands-on, project-based design projects with computer
programming. The goal of the project work is to provide an authentic experience and give students
the opportunity to develop process-driven problem-solving skills. A large focus of these classes is
developing algorithmic thinking skills, and an introduction to computer programming has been
used to facilitate meeting this objective. In addition, with the ubiquitous use of microcontrollers
and platforms such as Arduino, faculty now can integrate hands-on experiences with hardware to
motivate student learning. This paper presents the results of qualitative and quantitative analysis
of two ways to introduce programming concepts and the use of microelectronics in a first-year
engineering course. In one approach, students are first taught algorithmic thinking and
programming in C++ in a traditional sense, without an introduction to hardware applications. Once
they have gained facility in the programming language, they then apply this knowledge to
hardware applications. In an alternative approach being piloted during this study, students are
introduced to programming and algorithmic thinking via the hardware applications; the material is
introduced concurrently instead of sequentially.

Findings from pre and post-surveys indicate that students taught using both approaches had similar
improvements in self-efficacy to code and build projects with basic circuitry. In addition, most
students appreciated the approach used in their class; if taught with a hardware-first approach, they
thought a hardware-first approach provides greater learning, and if taught with a software-first
approach, they thought a hybrid software-first approach provides greater learning. Most students
expressed little frustration in learning the material using either approach. Of those who did express
frustration, most suggested that using the other approach would have led to increased frustration
in learning the material.

Keywords
Programming, First-year Engineering, Programable Microcontrollers, Arduino

Introduction

At Northeastern University College of Engineering, all first-year students follow a common
curriculum, as part of a “Cornerstone to Capstone” educational program adopted in 2014 [1]. The
first-year Cornerstone course uses projects to emphasize the ways in which engineering can
develop practical problem-solving applications. In Cornerstone, there are essential topics in which
students should become competent across disciplines, including effective communication,
teamwork, design thinking, knowledge application, technical skills, and problem-solving [2]. The
Cornerstone course was carefully designed to help first-year students achieve success in the
program and develop the necessary technical and professional competencies regardless of the

specific engineering major they select in their second year [3]. There is a strong emphasis on
applying technical knowledge in a practical way, developing analytical problem-solving and
decision-making skills, and demonstrating resourcefulness. As a result, students tend to be more
vested in the learning process, appreciate what they have learned, remain engaged, and retain more
of the material [4-7].

One of the main elements of the Cornerstone course is coding and algorithmic thinking. As many
instructors know, learning to code can be very intimidating to many students. At Northeastern
University, this aspect of the Cornerstone course centers on practical, code-based solutions to real-
life problems using Mathworks’ MATLAB and the C++ programming language. In the past decade
or so, low-cost microcontrollers such as Arduino have increased student engagement and brought
programming to life. Students enjoy the tactile, real-world use of their new programming skills,
and introducing microcontrollers to the learning of computer programming helps overcome the
educational challenges typically seen in first-year courses that include programming. In
comparison to the teaching of design, teaching programming is more difficult due to the wide
range of students’ past experiences. Approximately 73% of incoming students have Advanced
Placement (AP) credits along with a range of high school STEM experiences from ‘none to
advanced’ such as First Robotics or Vex Robotics. The first-year is common to all engineering
students and Cornerstone is populated by students who have declared from all engineering majors,
students who select engineering but are undeclared in their major and students who are undecided
in their college and explore class offerings from across the university. With such a wide range of
experiences, faculty struggle with students that sometimes feel inadequate as they have difficulty
understanding new programing concepts while their fellow classmates with experience seem to
just get it with ease. This has been increasingly evident with the introduction of microprocessors
and hardware to go along with learning software development.

In order to infer best practices, this study examines a pilot approach in teaching programming and
algorithmic thinking with hardware applications within the context of an introductory engineering
program. In the traditional approach, students are first taught algorithmic thinking and
programming in C++ in a traditional sense, without an introduction to hardware applications. Once
they have gained facility in the programming language, they then apply this knowledge to
hardware applications by programming and building Arduino projects. In the piloted approach,
students are introduced to programming and algorithmic thinking via Arduino applications; basic
programming concepts and the microprocessor hardware and circuitry are introduced concurrently
instead of sequentially.

The purpose of this paper is to outline the differences of the two approaches and present the student
learning outcomes from each. The research questions the paper aims to answer is whether the
piloted approach provides equivalent learning outcomes and course satisfaction. The paper will
also describe the applications used in the various projects and analyze the above forms of
assessment to qualify the approaches. Additional takeaways include how both the students and
instructors are affected by each approach and the lessons learned along the way to make both
successful.

Literature Review

There is ample evidence in the literature of programs designed to implement a hands-on, low-cost,
easily integrated design component in a first-year engineering course used to emphasize the
importance of understanding how software and hardware are interlaced, increase retention and
student satisfaction [8] [9] [2] [10] [11]. The byproduct of this approach is increased student
engagement often in a meaningful way by making a strong connections to the many embedded
computing applications used in students’ everyday experience and in society in general [4] [12].
In addition, the use of these components provides an increased opportunity to teach lessons in
troubleshooting and conducting experiments in order to systematically solve a problem [13].
Another byproduct of using these components is that they open the door to solving a wide variety
of problems and research has shown the positive impacts of giving students choice on which
problems to attack along with an increase in student satisfaction [14]. The general approach in
many of these courses is to begin with developing a student’s problem-solving skills and
introducing them to structured software. Programming languages such as Matlab, C++, Python
and others are used as the tools to teach algorithmic thinking [15-18]. In another possible approach,
such as a computer science course used to introduce students to the computer environment,
students might be exposed to Ohm’s Law, logic gates, and how these elements can combine to
form basic computer hardware, then spend time working on code and an application like being
able to control a radio controlled car [19]. The use of short theory sessions followed by immediate
practical hands on sessions of “Learning by Doing” was shown to increase student performance
on final exams and student satisfaction [20]. In whichever approach is used, the goal is to bring
design and programming to life in order to increase student self-efficacy, and better retain and
improved student perceptions of the value of computer programming in the first year [21-23].

Background

First-year Engineering Program

The first year is common for all engineering majors and there are two general engineering courses
offered each semester. In total, about 30 separate sections are run with approximately 30 students
in each. The Cornerstone 1 and 2 courses specifically incorporate the integration of hands-on,
project-based design projects along with computer programming and the use of microcontrollers.
Project-based Cornerstone has, as one of its challenges, the ability to have incongruent learning of
course content due to the nature of problem solving and design. By highlighting that engineering
problem solving brings together groups of competencies in a networked fashion rather than in a
linear fashion, we can help increase the quality of instruction for all students by showing them that
this incongruence is acceptable. Specifically, the emphasis is that Cornerstone is a lens by which
engineering learning can come together to develop practical applications to solving problems.

The Cornerstone 1 course focuses on learning the principles of engineering and design; this is
accomplished through active learning in areas such as problem definition, conceptual design,
preliminary and detailed design, design communication and implementation, engineering ethics,
along with report writing and presentations in relation to projects that students produce in teams.
There is a strong emphasis on applying technical knowledge, developing problem-solving and
decision-making skills, and using computer-aided design (CAD) to communicate graphically.

Within this course, algorithmic thinking and programming with C++ is introduced along with the
basic use of microcontrollers. Procedural programming using functions is covered in order to
facilitate the use of Arduino based micro-controllers and basic components such as LEDs, RGB
LEDs, Potentiometers, Piezoelectric speakers, servos and motor controllers, LCD screens, RFID
and various sensors such as those used to measure temperature, pressure and force. All these
elements are taught to help facilitate the solution to the design problem at hand.

Cornerstone 2 continues with finishing elements of C++, namely data structures, and continues
problem solving and programming with Mathworks’ MATLAB and the further use of Arduino
based microcontrollers. In addition, value sensitive design and ethical theories are introduced on
the design side along with 3-D design software. This study does not include students taking
Cornerstone 2.

In the first-year program prior to 2014, instruction in the design elements was separate from the
programming and microcontrollers elements. The first course in this series, General Engineering
and Design, focused on design, ethics and graphical communication only. In the second course,
Problem Solving and Computation, students developed their algorithmic thinking skills using the
software tools of Mathworks’ MATLAB, C++ programming language and Arduino-based
microcontrollers. This two-course sequence has all of the same learning objectives and topics as
the Cornerstone 1 and 2 sequence and is still in use today because of the need to accommodate
transfer students who may have programming or design experience but not both, students who are
undecided in college and are exploring various disciplines, and as part of an Engineering Minor
for non-engineers. Both these courses offer a project and teams-based experience for our students
and cover all the same material as the Cornerstone sequence.

In this study two student cohorts were used, one from Cornerstone 1 and one from Problem Solving
and Computation. In both courses, only the C++ programming and microcontroller experiences
are compared, and in both courses these subjects are taught at the beginning of the course outline
with no other topics introduced. The sequencing of content in each of these courses is summarized
in the next two sections. The subject matter and electronic components are the same in both. The
approach used to introduce the subject matter is different and is the focus of this study.

Cornerstone 1 – Software-first Instruction

The Cornerstone 1 course is centered around a robotics theme where students are tasked to design
an autonomous Sumo Wrestling Battlebot. In order to facilitate the design students must become
familiar with the operation of motors and sensors needed to control the robot. They are also
introduced to the design process, engineering ethics and graphical communications tools needed
to document the design as the semester progresses. At the beginning of the course, students first
begin to learn how to program in C++ so they can then begin to learn how to wire components to
a breadboard and program the Arduino microcontrollers to build their robot designs. The process
starts with an introduction to programming, data types and variables and basic input and output
over the course of one week. Students move to problem solving and writing codes that require
decisions in the next week. Week three in programming introduces students to the concept of loops.
Finally, in week four students learn about user written functions along with random number
generators. At this point students have now practiced programming and begin to use a specialty

 Figure 1. Sparkfun Inventors Kit.

kit of electronic components provided by Sparkfun Electronics called an Inventors Kit as shown
in Figure 1. The main kit components include an Arduino based microprocessor called a
Redboard, a motor driver, gear motors, servo motor, ultrasonic distance sensor, TMP36
temperature sensor, photocell, Tricolor LCD, assorted color LCDs, buttons, power switch,
piezoelectric speaker, resistors, LED display, various wires and wheels. Students begin to learn
about basic circuits, breadboards, programmable microcontrollers and the use of the Arduino IDE.
In addition, a robot chassis is provided along with reflective sensors, ultrasonic distance sensors
and servo motors that are used as an initial platform in the robot builds.

The process of learning the basics of Arduino is accomplished by completing 3 mini projects which
are outlined as follows. In project 1, students begin with blinking a LED and the use of digital
ports on the Arduino board, then integrate a potentiometer to control the blink rate, a photocell and
the Serial Monitor to learn how analogue ports work. From there they are introduced to RGB
LEDs. The final assessment has the students complete a challenge project of making a holiday
lights string that can blink at varying rates and colors and turn on and off when it is dark or light
out. In project 2, students are introduced to a piezoelectric speaker, button use, an LCD and a
temperature sensor. In the final assessment students work to create a thermostat with feedback
messages. In project 3, motor controllers, motors, servos and an ultrasonic distance sensor are
introduced. The final assessment has the students complete a challenge project to design a fill
level controller with various lights, buttons and status messages. This process takes about 2 weeks
and students then begin the basic sumo robot build.

The robot competition has two phases. The initial build phase where students focus on getting all
the hardware to work and look to develop a working algorithm to give their robot a competitive
edge. In this phase all robots use only the base robot kit and look the same but will have widely
different programming strategies. The robots will use reflectance sensors, ultrasonic distance
sensors and servo motors to control how they operate in the sumo ring. After this first competition

the second phase begins, and the focus is to integrate new components and redesign the robot from
the ground up to gain a competitive advantage. Here students get to redesign all systems and build
a new robot to a set of constraints defined only on size and weight. The students then have a final
competition with their new robot at the end of the term.

Problem Solving and Computation – Hardware-first Instruction

The Problem Solving and Computation course is centered around an espionage theme where
students are tasked each week to work on a homework problem (a “Mission”) that ties that week’s
learning objective to a spy/espionage storyline. As an example, students must write a program that
includes encryption and decryption functions (using one-time pad cryptography) during the week
where C++ strings and functions are the learning objectives.

The first four weeks of class are used to teach code fundamentals through the Arduino platform.
The goal of this approach is to make coding concepts, which can seem abstract to many students,
more tactile and easier to conceptualize through physical input and output. This approach also
allowed students to create useful, physical, code-enabled objects very quickly in their learning and
so reinforces the practical utility of what they’re learning. This process begins at the second class
of the semester, when students learn breadboard and circuitry basics. By the end of the class,
students can wire an LED circuit on the breadboard and power it from a 5 V source.

The focus of the next three classes is to learn the basics of what code is and how it works in
Arduino C++: minimal required code structure, code editor vs. compiler, basic Arduino functions
(pinMode, digitalWrite, and delay), comments, and declaring and using integer variables. All of
these are taught using an LED circuit on the breadboard as the only required circuitry. The first
homework asks students to integrate all of these ideas together and create a box with 2 LEDS that
transmit the student’s initials in visual Morse code. After this, the next class focuses on Arduino
output functions beyond digitalWrite so that the LED can have variable brightness and so that
sound can be output. Learning these helps keep students engaged at this point, since simply
blinking lights starts to lose interest.

The next two classes focus on Boolean logic and branching through if and if/else structures. These
topics are taught very naturally using a button, so the requisite circuitry and Arduino functions for
this are also taught. The second homework asks students to create a lockbox of sorts, with three
buttons, two LEDs, and a piezo speaker on the breadboard. Students must connect all of these
components to the Arduino and write code that tracks how many times the buttons have been
pushed by the user. Different lights and sounds are output when the buttons are pushed the correct
or incorrect number of times.

The following week—the fourth of the semester—rounds out the hardware-based introduction to
coding. An analog sensor, a photoresistor implemented with a voltage divider circuit is taught. The
resulting numerical values are used in the code within range-based if/else-if/else logic to create a
kind of night light and “theremin-like” musical instrument. The Serial Monitor is also taught so
that these objects can be calibrated to a particular setting. A final homework asks students to
integrate all the learned concepts into a smart device that responds to its environment. The device

is a “magic” candy box themed to Halloween (in the Fall semester) or Valentine’s Day (in the
Spring semester) where sounds and lights change as the box is opened.

At this point in the semester, students have used the Arduino ecosystem to learn not just basic
circuitry but also nearly all of the fundamentals of coding: basic structure, comments, variables,
branching using if-statement structures, integer arithmetic. We then spend the next four weeks
getting deeper into C++ writing programs that run on the computer. Students are quickly able to
apply their Arduino learning to create sophisticated programs. Additional topics we add these
weeks are: floating-point values; looping with while, do/while, and for; pseudorandom numbers;
functions; strings; and arrays. Finally, in the last third of the class, students learn MATLAB as an
alternative programming language and problem-solving system which is not part of this study.

A final project requires students to use their Arduinos to create a security system for a chosen
scenario. Students propose what hazards they want to protect against, such as fire, intruder, loss-
of-power, or theft of the device, as well as how the relevant information is output from the device,
such as text on an LCD screen, LED strips, or sounds. The projects are required to use at least two
electronic components not learned in class. Most students work on these projects during the last
two to three weeks of class.

Methodology

The main data collection for this study was in the form of student surveys. All students were asked
to complete surveys near the start and again near the end of semester. Surveys were collected via
the class learning management system. Students who responded to both surveys had their
responses brought together, and all responses were then anonymized before analysis. Pre-course
surveys asked students about their prior experiences and self-efficacy with coding and with
microelectronics and circuitry. Post-course surveys asked similar questions and added questions
about how students think a hardware or software first approach would affect student learning and
student frustration. The surveys also asked for student gender and year of study (first-year student,
second-year student, etc.) to see if these were confounding factors in their survey responses. The
survey questions for the pre-survey and post-survey can be found in Appendix A and Appendix B,
respectively.

The surveys were not graded or strictly required, but response rates were nevertheless high.
Response rates to the pre-survey and post-survey were 89% and 79%, respectively. The final net
response rate of students who completed both surveys was 71% (24 / 34) for students in the
hardware-first class and 79% (44 / 56) for students in the software-first class. The results presented
below consider survey responses from only those students who completed both surveys.

Results and Discussion

While the student populations in the two classes were similar in some respects, they were
sufficiently different such that it is difficult to draw conclusions by direct comparison of the survey
results from the two populations. As shown in Table 1, both the hardware-first and software-first
classes were close to even gender balance with no significant differences (p=0.63). The hardware-
first class was 58% women, while the software-first classes were 52% women. No student declined

Table 1. Student Demographics.

to report their gender or chose to self-report a gender other than man or woman. The age of the
students was significantly different (p<0.001) between the hardware-first and software-first
classes, so this cannot be ruled out as a confounding factor in the results. The hardware-first class
had 0 first-year students, 18 second-year students, 4 third-year students, and 2 fourth-year or later
students. The software-first class consisted of 41 first-year students, 2 second-year students, and 1
third-year student. The classification into first-year, second-year, etc. was purely chronological
based on when students matriculated as a full-time university student, rather than credits earned or
other basis of university standing.

In the hardware-first class, 29% of the students reported having prior experience writing computer
programs and 5% (1 student) reported prior experience making circuits. Both of these values are
lower than in the software-first class, where 34% of the students report having written computer
programs before and 25% reported prior experience making circuits. This result is somewhat
surprising, since the hardware-first class was older on average by about 1 year.

Figure 2 shows histograms of student responses to the question about self-efficacy on projects
involving coding. In both classes, the largest group of students reported feeling “not at all
confident” in their abilities when the semester began (50% hardware-first, 48% software-first). By
the end of the semester, however, no students felt this way anymore, and the largest group of
students in both classes reported now feeling “moderately” or “very” confident (76% hardware-
first, 84% software-first). The post-survey results are very similar in both classes with no
significant differences (pre-survey, p = 0.39, post-survey, p = 0.58). Therefore, both the hardware-
first and software-first approaches were successful in improving student self-efficacy to desired
levels on this primary learning objective.

Results: Demographics
N=68

Software
 First

Hardware
First

Total or
Weighted Average

Fully Completed Surveys 44 24 68

Gender: Male 47.73% 41.67% 44.7%

Gender: Female 52.27% 58.33% 55.3%

Gender: Other 0% 0% 0%

Factors & Tests Conducted Values & Statistical Significance in Outcomes

Gender: M ⬩ F ⬩ O Expected, 𝛘𝛘2: 45.58 ⬩ 54.41 % ⬩ 0% NSD, p= 0.63

Year Classification, 1st, 2nd…: t-test: 1.01 2.37 SD, p<0.001

Figure 2. A histogram of responses from students in the (a) hardware-first class and (b) software-
first class to the question about how confident they would be to start working on a graded project
that involves computer programming in the pre- and post-surveys.

Students also increased in confidence in their ability to create circuitry. Figure 3 shows histograms
for self-efficacy on projects that involve circuitry. Unlike the previous question, the result here
shows a perceptible difference, however not significant (pre-survey, p = 0.25, post-survey, p =
0.17) between the hardware-first and software-first classes. Once again, students in both classes
report low confidence in the pre-survey, with the largest group of students in both classes feeling
“not at all confident”; however, the proportion of students reporting no confidence is larger in the
hardware-first class, 63%, relative to the software-first class, 48%.

Figure 3. A histogram of responses from students in the (a) hardware-first class and (b) software-
first class to the question about how confident they would be to start working on a graded project
that involves circuitry in the pre- and post-surveys.

Though all students reported increased confidence by the end of the semester, students in the
hardware-first class remained somewhat lower relative to the software-first students. “Moderately
confident” was the most often selected choice in the hardware-first class at 50%, whereas “Very
confident” was most often selected in the software-first class at 50%. In the “Extremely” category
the results had a similar pattern with 11% for students in the software-first class and only 4% for
those in the hardware-first class.

Figure 4. Student responses to a post-survey question about which approach would lead to more
learning.

In the post-survey, students in both classes were asked their opinion about whether a software-
first, hardware-first, or hybrid approach would help students learn more. No student in either class
thought that the choice of which approach to use would be inconsequential, and no student thought
that it would be better to teach all the programming before starting any of the hardware. In choosing
between the remaining two options, hybrid or hardware-first, there were significant differences
(p<0.001) in responses between the two classes. As can be seen in figure 4, more students in the
hardware-first class thought the hardware-first approach led to better learning outcomes (59% to
3%), although 40% of the students thought learning some programming before moving on to the
hardware would help. In the software-first class, nearly all students thought that learning some
programming before the hardware would lead to the best learning outcomes. To summarize these
results, students taught with a hardware-first approach mostly thought a hardware-first approach
provides greater learning, and students taught with a software-first approach mostly thought a
hybrid software-first approach provides greater learning. The students in the hardware-first class,
though, were more equivocal in their opinions about this.

When asked whether a change in approach might have led to less frustration, most students in both
courses—71% of the students in the hardware-first course and 61% of the students in the software-
first course—said they felt no frustration with the approach used with no significant difference
(p = 0.66) as shown in figure 5. Of the remaining students, more students in each course suggested
that the approach used in their class is the one that would, in fact, have led to less frustration. It is
hard to know how to interpret this result. In the case of the “hardware-first” class, only one day
was spent purely on circuitry. After this, the remainder of the first four weeks taught programming
on the Arduino, i.e., programming instruction was simultaneous with instruction in hardware and
circuitry. Therefore, one interpretation for these students is that they would have preferred
additional circuitry-only instruction before learning any code. In the case of the “software-first”

• Sig. Diff., P < 0.001

Figure 5. Student responses to a post-survey question about which approach would lead to fewer
student frustration.

course, a third of the students total reported that “introducing the hardware basics after some
introduction to programing would have helped me be less frustrated.” Since the option given in
the survey stated “introduction” to programming, these students might be indicating that the
hardware instruction might be moved to earlier in the class, after only an introduction to
programming. In both classes, roughly 10% of the students stated that the approach taken by the
other class would have led to less frustration.

The work described here represents the first time a hardware-first approach was attempted. As is
commonly the case when teaching new material or teaching existing material in a new way, the
co-author piloting this approach found many small areas where students were confused and would
have benefitted from additional scaffolding or adjustments in the content delivery. Thus, the
second attempt in teaching with a hardware-first approach will likely see students experience
reduced frustration and easier learning outcomes. As an example, integer variables and arithmetic
were taught in the same class day. These were taught together this time mostly because they were
taught together during the previous times that the instructor taught programming, and these
concepts are easily demonstrated together on a text-output program running on a computer. On the
other hand, when using the hardware-first approach and so learning to code on the Arduino,
physical output (e.g., an LED turning on or off) is the result of the program, and arithmetic results
are harder to palpably see. Thus, arithmetic will be delayed to later in the content schedule in future
iterations.

The study’s results also have led to the second co-author rethinking the software-first curriculum.
In previous studies as discussed in the literature review show that adding hands-on elements
increased student engagement and motivation. It seems logical then that introducing these
elements earlier in the curriculum might lead to better learning outcomes and an increase in student
self-efficacy. The author intends to now stagger the programming elements and hardware projects
in a hybrid model instead of doing all programming first and hardware second. This approach will
require a redesign of some of the projects as any use of Arduino will require the students to at least
understand decisions and loops in programming.

Conclusion and Recommendations

In this study, we investigate student perspectives on their experiences in learning basic procedural
programming and applying these skills to control hardware via an Arduino based microcontroller.
Students from two separate classes were taught the same material but in a different order. In the
first class, students first learn all the necessary programming elements before applying these to the
hands-on microcontroller projects. In the second class, students learn concurrently both the
programming and hands-on microcontroller elements. Responses to a pre and post-course survey
are used to analyze students’ experiences, self-efficacy with coding and with microelectronics and
circuitry. Also, in the post-course survey students are asked about how an approach would affect
student learning and influence any student frustration.

Analysis of the pre and post surveys indicate that students taught using either approach had similar
improvements in self-efficacy to code and to build projects with basic circuitry. Therefore, both
the hardware-first and software-first approaches are viable options to successfully teach software
and hardware integration in a first programming course. Regarding a preference, students taught
with a hardware-first approach mostly thought a hardware-first approach provides greater learning,
and students taught with a software-first approach mostly thought a hybrid software-first approach
provides greater learning indicating a bias towards the approach currently being used. This is not
a surprising result as our students readily adapt to the learning environment in which they are put
in. However, we should still acknowledge the fact that just because they are resilient and adaptable
it does not mean the approach we use is the best one and we should always be open-minded to
change. Finally, most students expressed little frustration in learning the material using either
approach and for those who did more suggested that using the other approach would have led to
increased frustration in learning the material

Even though there may be confounding factors of age, programming and microcontroller
experiences between the software-first and hardware-first classes, these findings show that there
will always be more than one way to approach meeting learning objectives in instructional design.
As educators we must always be willing to try new approaches and sometimes after assessment,
we will find that we make a sound case for instructional change while at other times it might be
inconclusive or a step backwards. Nonetheless, there is value in trying and as in this study we will
continue to look to improve our approach to introducing students to both software and hardware
applications moving forward.

References

[1] S. F. Freeman et al., “Cranking Up Cornerstone: Lessons Learned from Implementing a Pilot

with First-Year Engineering Students,” presented at the 2016 ASEE Annual Conference &
Exposition, Jun. 2016. Accessed: Jan. 06, 2023. [Online]. Available:
https://peer.asee.org/cranking-up-cornerstone-lessons-learned-from-implementing-a-pilot-
with-first-year-engineering-students

[2] K. A. Dunnigan, A. Dunford, and J. Bringardner, “From Cornerstone to Capstone: Students’
Design Thinking and Problem Solving,” presented at the 2020 ASEE Virtual Annual
Conference Content Access, Jun. 2020. Accessed: Jan. 27, 2023. [Online]. Available:

https://peer.asee.org/from-cornerstone-to-capstone-students-design-thinking-and-problem-
solving

[3] J. A. Bolognese, R. Whalen, E. D. Cordell, A. P. L. Cilfone, and B. D. Williams, “A First Year
Engineering Information Literacy Workshop: Redesigned for Remote Delivery,” presented at
the 2021 ASEE Virtual Annual Conference Content Access, Jul. 2021. Accessed: Jan. 06,
2023. [Online]. Available: https://peer.asee.org/a-first-year-engineering-information-literacy-
workshop-redesigned-for-remote-delivery

[4] B. K. Jaeger, R. Whalen, and S. F. Freeman, “Programming is Invisible – or is it? How to
Bring a First-year Programming Course to Life,” presented at the 2012 ASEE Annual
Conference & Exposition, Jun. 2012, p. 25.1079.1-25.1079.23. Accessed: Jan. 06, 2023.
[Online]. Available: https://peer.asee.org/programming-is-invisible-or-is-it-how-to-bring-a-
first-year-programming-course-to-life

[5] M. Jalal and H. Anis, “The Impact of Students’ Grit & Project Ownership on Students’
Learning Outcomes in Maker-based Cornerstone Engineering Design Courses,” presented at
the 2022 ASEE Annual Conference & Exposition, Aug. 2022. Accessed: Jan. 27, 2023.
[Online]. Available: https://peer.asee.org/the-impact-of-students-grit-project-ownership-on-
students-learning-outcomes-in-maker-based-cornerstone-engineering-design-courses

[6] S. C. Ritter and S. G. Bilén, “EDSGN 100: A first-year cornerstone engineering design
course,” presented at the 2019 FYEE Conference, Jul. 2019. Accessed: Jan. 27, 2023. [Online].
Available: https://peer.asee.org/edsgn-100-a-first-year-cornerstone-engineering-design-
course

[7] E. Kames, B. Morkos, and D. Shah, “A Longitudinal Study Exploring Motivation Factors in
Cornerstone and Capstone Design Courses,” presented at the 2018 ASEE Annual Conference
& Exposition, Jun. 2018. Accessed: Jan. 27, 2023. [Online]. Available: https://peer.asee.org/a-
longitudinal-study-exploring-motivation-factors-in-cornerstone-and-capstone-design-courses

[8] S. John, C. Hanson, J. Lenn, M. Jansons, and J. Potoff, “Implementing Embedded Control into
Projects Designed by Students With Little or No Programming Experience,” presented at the
2020 First-Year Engineering Experience, Jul. 2020. Accessed: Jan. 31, 2023. [Online].
Available: https://peer.asee.org/implementing-embedded-control-into-projects-designed-by-
students-with-little-or-no-programming-experience

[9] J. R. Haughery and D. R. Raman, “A Systematic Review of Mechatronic-based Projects in
Introductory Engineering and Technology Courses,” presented at the 2015 ASEE Annual
Conference & Exposition, Jun. 2015, p. 26.119.1-26.119.9. Accessed: Jan. 31, 2023. [Online].
Available: https://peer.asee.org/a-systematic-review-of-mechatronic-based-projects-in-
introductory-engineering-and-technology-courses

[10] M. Galaleldin and H. Anis, “The Impact of Integrating Making Activities to Cornerstone
Design Courses on Students’ Implicit Theories of Making Ability,” presented at the 2019
ASEE Annual Conference & Exposition, Jun. 2019. Accessed: Jan. 27, 2023. [Online].
Available: https://peer.asee.org/the-impact-of-integrating-making-activities-to-cornerstone-
design-courses-on-students-implicit-theories-of-making-ability

[11] M. Galaleldin, H. Anis, and P. Dumond, “Board 32: The Impact of Integrating Making
Activities Into Cornerstone Design Courses,” presented at the 2019 ASEE Annual Conference
& Exposition, Jun. 2019. Accessed: Jan. 27, 2023. [Online]. Available:
https://peer.asee.org/board-32-the-impact-of-integrating-making-activities-into-cornerstone-
design-courses

[12] W. Zhan, J. Wang, and M. Vanajakumari, “High impact activities to improve student
learning,” presented at the 2013 ASEE Annual Conference & Exposition, Jun. 2013, p.
23.661.1-23.661.14. Accessed: Jan. 31, 2023. [Online]. Available: https://peer.asee.org/high-
impact-activities-to-improve-student-learning

[13] K. Calabro, “Work in Progress: A Case Study Exploring Teaching Strategies Employed in a
Cornerstone Engineering Design Course,” presented at the 2018 ASEE Annual Conference &
Exposition, Jun. 2018. Accessed: Jan. 27, 2023. [Online]. Available:
https://peer.asee.org/work-in-progress-a-case-study-exploring-teaching-strategies-employed-
in-a-cornerstone-engineering-design-course

[14] T. Shepard, J. Choi, T. D. Holmes, and B. W. Carlin, “The Effect of Project Constraints and
Choice on First-year Microcontroller Projects,” presented at the 2015 ASEE Annual
Conference & Exposition, Jun. 2015, p. 26.1522.1-26.1522.12. Accessed: Jan. 31, 2023.
[Online]. Available: https://peer.asee.org/the-effect-of-project-constraints-and-choice-on-
first-year-microcontroller-projects

[15] P. Wong and B. Pejcinovic, “Teaching MATLAB and C Programming in First-year Electrical
Engineering Courses Using a Data Acquisition Device,” presented at the 2015 ASEE Annual
Conference & Exposition, Jun. 2015, p. 26.1480.1-26.1480.11. Accessed: Jan. 31, 2023.
[Online]. Available: https://peer.asee.org/teaching-matlab-and-c-programming-in-first-year-
electrical-engineering-courses-using-a-data-acquisition-device

[16] D. J. Frank, K. J. Witt, C. Hartle, J. J. Enders, V. Beiring, and R. J. Freuler, “A Low-Cost
Robot Positioning System for a First-Year Engineering Cornerstone Design Project,”
presented at the 2016 ASEE Annual Conference & Exposition, Jun. 2016. Accessed: Jan. 27,
2023. [Online]. Available: https://peer.asee.org/a-low-cost-robot-positioning-system-for-a-
first-year-engineering-cornerstone-design-project

[17] R. H. Brooks, “First-Year Engineering Program Curriculum ReDesign,” presented at the
ASEE 2021 Gulf-Southwest Annual Conference, Mar. 2021. Accessed: Jan. 31, 2023.
[Online]. Available: https://peer.asee.org/first-year-engineering-program-curriculum-redesign

[18] D. J. Frank et al., “Developing and Improving a Multi-Element First-Year Engineering
Cornerstone Autonomous Robotics Design Project,” presented at the 2017 ASEE Annual
Conference & Exposition, Jun. 2017. Accessed: Jan. 27, 2023. [Online]. Available:
https://peer.asee.org/developing-and-improving-a-multi-element-first-year-engineering-
cornerstone-autonomous-robotics-design-project

[19] J. N. Thomas, C. Theriault, C. Duba, L. P. van Ginneken, N. J. Rivera, and B. M. Tugade, “A
Project-based Computer Engineering Curriculum,” presented at the 2015 ASEE Annual
Conference & Exposition, Jun. 2015, p. 26.90.1-26.90.20. Accessed: Jan. 31, 2023. [Online].
Available: https://peer.asee.org/a-project-based-computer-engineering-curriculum

[20] M. V. Deshpande, P. K. Waychal, and P. P. Udawant, “Analysis of Improved Pedagogy
Applied for Teaching courses related to Computer Programming for First Year Engineering
Programs,” presented at the 2015 ASEE International Forum, Jun. 2015, p. 19.3.1-19.3.5.
Accessed: Jan. 31, 2023. [Online]. Available: https://peer.asee.org/analysis-of-improved-
pedagogy-applied-for-teaching-courses-related-to-computer-programming-for-first-year-
engineering-programs

[21] J. K. Lumpp et al., “Instructional Use of Computers in a Hands-on Programming Course for
First-Year Engineering Students,” presented at the 2019 ASEE Annual Conference &
Exposition, Jun. 2019. Accessed: Jan. 31, 2023. [Online]. Available:

https://peer.asee.org/instructional-use-of-computers-in-a-hands-on-programming-course-for-
first-year-engineering-students

[22] B. M. Lunt and C. R. Helps, “Freshman Cornerstone Course Meets Multiple Educational
Goals,” presented at the 1998 Annual Conference, Jun. 1998, p. 3.292.1-3.292.6. Accessed:
Jan. 27, 2023. [Online]. Available: https://peer.asee.org/freshman-cornerstone-course-meets-
multiple-educational-goals

[23] J. E. Lewis, B. S. Robinson, and N. Hawkins, “First-Year Engineering Student Perceptions in
Programming Self-Efficacy and the Effectiveness of Associated Pedagogy Delivered via an
Introductory, Two-Course Sequence in Engineering,” presented at the 2020 ASEE Virtual
Annual Conference Content Access, Jun. 2020. Accessed: Jan. 31, 2023. [Online]. Available:
https://peer.asee.org/first-year-engineering-student-perceptions-in-programming-self-
efficacy-and-the-effectiveness-of-associated-pedagogy-delivered-via-an-introductory-two-
course-sequence-in-engineering

Appendix A: Pre-Survey

1. What is your name?
2. What are your pronouns?
3. What was your first year of full-time college study?
4. Prior to this semester, how much experience did you have with writing computer

programs?
o I had never written a computer program.
o I had very limited prior experience writing computer programs
o I had written multiple computer programs, but I needed a little help getting started

again
o I had written multiple computer programs, and was able to write short programs

again very quickly
5. If you had programming experience prior to this class, where did you first learn to

program?
o AP course in high school
o Course in school before high school
o Extra-curricular club or program
o Non-AP course in high school
o Not applicable / I had no prior experience
o Previous college course
o Self-taught

6. Prior to this semester, how much experience did you have with making electronics (basic
circuitry)?

o I had never worked with making electronics
o I had very limited prior experience with making electronics
o I had worked with making electronics multiple times, but I needed a little help

getting started again
o I had worked with making electronics multiple times, and was able to get started

again very quickly
7. Thinking back to just before we started this semester, how confident would you have

been to start working on a graded project that involves computer programming?

o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

8. Thinking back to just before we started this semester, how confident would you have
been to start working on a graded project that involves making electronics (basic
circuitry)?

o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

9. Thinking back to just before we started this semester, how confident would you have
been to start working on a graded project that involves an unclear path to the solution?

o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

Appendix B: Post-Survey

1. What is your name?
2. What are your pronouns?
3. What was your first year of full-time college study?
4. How confident would you be now to start working on a graded project that involves

computer programming?
o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

5. How confident would you be now to start working on a graded project that involves
making electronics (basic circuitry)?

o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

6. How confident would you be now to start working on a graded project that involves an
unclear path to the solution?

o Not at all Confident
o Slightly Confident
o Moderately Confident
o Very Confident
o Extremely Confident

7. After being introduced to both a programming language (C++) and a hardware
application of programming (Arduino), please chose the statement you most agree with.

o Starting with programming or hardware first would not make a difference in a
student's learning

o Learning all the programming before any hardware introduction would help
students learn more

o Introducing the hardware basics after some introduction to programing would
help students learn more

o Starting with the hardware basics would help students learn more
8. After being introduced to both a programming language (C++) and a hardware

application of programming (Arduino) please chose the statement you most agree with in
regard to frustrations experienced.

o I didn’t feel any particular frustration about learning the hardware or
programming

o Starting with programming or hardware first would not have made a difference in
my level of frustration

o Learning all the programming before any hardware introduction would have
helped me be less frustrated

o Introducing the hardware basics after some introduction to programing would
have helped me be less frustrated

o Starting with the hardware basics would have helped me be less frustrated

	Keywords
	Keywords

