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Teaching Computer Architecture with Spatial Ability
Considerations

1 Introduction

Students’ spatial ability or ability to reason about visual images is highly correlated with success
and retention in Science, Technology, Engineering, and Mathematics (STEM) fields. Wai et al.
[1] found that this correlation is particularly strong for computer science and engineering
disciplines[1]. Many studies indicate that female students have lower spatial ability than male
students and wealthy students have higher spatial ability than students from poorer backgrounds
[2, 3, 4, 5] . The causes of gender and socioeconomic differences in spatial ability are not known
but changing how we teach computer science to reduce our reliance on spatial ability may be a
pathway to diversifying computer science. Instructors in other STEM disciplines have promoted
the success of all students, regardless of spatial ability, by changing their instructional
materials [6, 7, 8]. The first step in this process is to identify the instruction materials and
concepts that heavily rely on spatial ability.

Our computer architecture course has historically had one of the largest gender-based disparities
in student grades in the department and the largest for all courses that students typically take in
the first two years of the CS curriculum [9]. These disparities have more or less persisted despite
efforts to change the course using a variety of evidence-based pedagogies [10]. While these
studies highlight differences based on gender, we hypothesized that there may be achievement
differences based on spatial ability may also exist because of the correlation between gender and
minority status, and spatial ability [2]. If a difference based on spatial ability is observed, then
strategically changing instructional materials to close the gap between high and low spatial ability
students can indirectly level the playing field for women and minorities.

We calculated the correlation between students’ spatial ability scores and their scores in different
topics in the course to discover that the correlation for the topic of caches was stronger than all
the other topics with a Pearson’s correlation coefficient [11] of 0.33. The topic of number
representations had the second highest correlation coefficient with 0.29. Both correlations were
statistically significant with p < 0.001. In both topics, the spatial arrangement of bits can be used
to explain these topics and may be the underlying reason for the significant dependence of
students’ performance on spatial ability. For example, Figure 1 shows one of the slides from our
course material for how addresses from a 16-byte memory map to a small cache. In Figure 1, the
spatial orientation of the least-significant bit on the right of the memory address (highlighted in
yellow) indicates that this bit corresponds to the Block Offset of the cache. Likewise, the middle
address bits, colored in the diagram, indicate the index bits for the cache, and the left-most



Figure 1: Slide showing how to map addresses to cache. Different parts of the addresses are
highlighted and colored to show index and offset.

address bits indicate the tag. This process requires students to decode spatial information and
mentally translate visual information across the diagram (e.g., the arrows), likely requiring high
spatial ability.

Thus, we decided to redesign our instructional materials for caches and number representations to
reduce the need to use spatial reasoning to understand the diagram, a technique that others have
found effective [6, 7, 8]. In particular, the addition of more algorithmic approaches to highly
spatial topics was found to be most effective [8], so our efforts focused on changing our teaching
resources to emphasize algorithmic approaches rather than spatial approaches for explaining
number representations and cache behaviors.

An analogy between hash tables and caches offers one such algorithmic approach for teaching
caches: Addresses can be converted into the tag, index, and offset of a cache using a mathematical
hashing function (modular arithmetic and division) rather than the spatial arrangement of bits.
This analogy and mapping function are discussed in popular textbooks [12, 13] and was an
approach we confirmed that other instructors used through a survey we conducted. Modular
arithmetic is a technique that can also be helpful for understanding overflow issues for the topic of
number representations.Therefore, we focused on teaching the use of modular arithmetic with the
topic of number representations and then used the same concept to define the hashing function to
map data addresses to caches.

We hypothesized that this algorithmic approach would 1) have no detrimental effects for students’
learning of number representations and caches in general and 2) help students with low spatial
ability better learn number representations and caches. In particular, we expected to see this
benefit to be most prominent on questions where students need to map addresses to the tag, index,
and offset of the cache, which we believe is the task that requires the most spatial ability.



Checking the effect of this technique on students’ understanding of number representations
provides a synergistic robustness check. To test these hypotheses, we ask the following research
questions.

1. Does teaching a more algorithmic approach to number representations and caches, as
opposed to a spatial approach, lead to a significant difference in students’ performance on
quiz questions on these topics?

2. If there are changes in student performance on these assessments, is it affected primarily by
students’ spatial ability?

2 Background

Lohman [14] defines spatial ability as the ability to generate, retain, retrieve, and transform
well-structured visual images. As indicated by Lohman’s definition [14], spatial ability represents
multiple skills. Therefore, a comprehensive measurement of spatial ability must use multiple
types of tasks. The most popular test for spatial ability is the Purdue Spatial Visualization Test
[15]. This test is designed to test the ability to visualize rotated shapes. The skill of rotating
shapes is important in many STEM fields [8, 16, 17]. This test shows large individual variance
and gender differences [2]. Another common test is the Educational Testing Service (ETS)
Hidden Figures Test [18]. This test is designed to test the ability to find simpler shapes inside
more complex shapes. Performance on this test is also correlated with retention in STEM fields
[19]. Domain specific spatial ability tests can also be developed to meet the needs of a particular
field. Ormand et. al. developed Geologic Block Cross-sectioning Test, which tests the students’
ability to recognize the correct vertical cross-section through a geologic block diagram. [16]. In
this work, we did not develop any domain specific tests for spatial ability. We used both Purdue
Spatial Visualization Test [15] and Educational Testing Service (ETS) Hidden Figures Test [18] to
measure spatial ability for our students. We used these two tests because manipulating caches
spatially can require mentally translating and rotating blocks of data from memory to the cache
and parsing addresses requires identifying smaller parts of an address from a larger address.

There have been multiple attempts at reducing the spatial ability gap between genders and how it
affects participation in STEM. Sorby and Baartmans [20] developed a course for enhancing the
3-D spatial visualization aimed at first year engineering students and reported lower dropout rates
for student who completed their program. Sorby also developed a spatial training intervention
aimed at middle school students [20] and reported better performance in introductory
programming for students taking part in the training program. These studies show that a students’
spatial ability is malleable and spatial skills can be learned [21]. However, additional classes that
only a subset of student is required to attend may be perceived as remedial. This perception can
discourage students and push them away from STEM fields [22].

Another method for reducing the effect of spatial ability in STEM education is to augment the
representations used in STEM education with other techniques that do not rely as much on spatial
skills. Stull [6] and Stieff[23] used concrete models of molecules to help students reason about
the structure of molecules. Hegarty [7] and Stieff[8] reported that introducing algorithmic
approaches for reasoning about molecular structure can be an effective way to reduce gender gap
in test scores related to molecular structure. In particular, Stieff[8] showed that teaching a



combination of algorithmic and metal rotation strategies was the most effective in helping low
spatial ability students. The advantage of local changes to course materials, that Stull, Stieff and
Hegarty used, is that the students do not have to take any additional courses or training, reducing
perceptions that the intervention is remedial and the implication that students with low spatial
ability need to be fixed.

There has not been much work studying how students learn binary number representations or how
to help students learn them. Herman et al. documented students’ misconceptions about binary
number systems and found that students struggle to understand the role that different bit positions
play in interpreting positional notations, frequently using improper weights [24]. Likewise,
students misunderstand how to detect overflow in fixed-width binary representations, focusing
inappropriately on the physical position of carry out bits and not on what those bits mean [24].
While they don’t consider spatial reasoning in their analysis, it may be possible that students with
low spatial ability struggle with number representations because the spatial arrangement of bits is
so vital to the interpretation of binary numbers.

The topic of caches is commonly taught with the help of many visual aids. For example, periodic
mapping of different memory addresses to caches is described with the help of coloring and
highlighting in diagrams in our instruction material as well as popular textbooks [12, 13]. We also
use analogies comparing how 2-D matrices are stored in memory to describe caches with
multi-byte cache blocks. Chunks of a linear memory are separated and rotated to fit a 2-D picture
of a cache. The reliance on visual aids has been shown to be taxing for students with low spatial
ability [25, 16]. This offers an explanation why students with low spatial ability may find it harder
to understand caches. We used data from Fall 2019 semester and divided the students into two
equal sized groups based on their spatial ability scores. Students with low spatial ability had an
average of 65% on the cache quiz and students with high spatial ability had an average of 76% on
the cache quiz. The difference between the groups is statistically significant (p < 0.001) with a
moderate effect size (Cohen’s d = 0.52) [26], representing a full letter grade difference between
students of high and low spatial ability for the topic of caches. In this paper, we seek to translate
the research findings of Stieff et al. [8] from the domain of organic chemistry to computer
science. As far as we know, this would the first attempt to replicate their efforts in computer
science. Examining the generalizability of their findings across disciplines may help us determine
whether the strategy of emphasizing algorithmic approaches is potentially an effective
pedagogical approach that could be applied across many different domains to mitigate the effects
of differing spatial ability across student populations.

3 Methods

3.1 Participants
In this study we are using a quasi-experimental design with Fall 2021 students going through the
computer architecture course with original, spatially focused content and Spring 2021 students
using the updated course with the algorithmic approach. The course is primarily taken by
second-year undergraduate students and enrolls between 300 to 400 students every semester. The
course uses a flipped classroom model, where students are required to watch recorded video
lectures before class, and solving problems in groups during class, and then complete a longer lab



Figure 2: Three examples from videos showing how the hash function changes with cache config-
uration

exercise after class based on the in-class material. The course grade is based on homework, lab
exercises, 11 proctored quizzes, and one comprehensive final exam. Two quizzes include
questions on number representations and arithmetic and two quizzes focus on caches. The
remaining seven quizzes cover topics that are not related to the instructional material modified in
this study. The aggregated scores of these seven quizzes was used to establish that students in
both semesters were otherwise similar. There were 45 students who registered for the course in
Fall 2021 and were also registered in Spring 2022. These students could have been influenced by
both versions of the course threatening the validity of the results. Therefore, we decided to limit
the study to students who registered for the course for the first time in each semester. This gave us
a final sample size of 371 students for Fall 2021 semester and 340 students for Spring 2022
semester. The same instructor taught both versions of the course.

3.2 Timeline
We followed the same timeline for both semesters and changes to the instruction material for
number systems and caches were the only changes between semesters. At the beginning of the
semester, students were asked to take a spatial ability assessment based on Purdue Spatial
Visualization Test [15] and Educational Testing Service (ETS) Hidden Figures Test [18] to
measure spatial ability for our students. This was an optional assessment and extra credit equal to
0.5% of the course grade was offered to students to take the test. In the first week of the course,
students learned about number systems and binary arithmetic. They took the quiz for number
systems in week 2 of the semester. The topic of caches was taught in weeks 11, 12 and 13 in both
semesters. Students took the first cache quiz in week 14 and the second one in week 15 of the
semester.

3.3 Content Changes

3.3.1 Video Lectures

In prior video lectures on binary arithmetic, overflow for unsigned binary addition was explained
by showing how the carry-out from the left-most bit position (spatial explanation) could not be
stored, creating mathematical errors. The video lecture was re-recorded to emphasize that
computers perform modular arithmetic due to fixed width representations and overflow was
explained to occur when traditional addition did not match modular addition.



Figure 3: This slide shows the parts of the binary address extracted by the functions.

Figure 4: Old question asking students to calculate sizes of tag and index fields before parsing
addresses.

In prior video lectures on mapping memory addresses to the tag, index, and offset of a cache, we
taught students a spatially focused approach to first calculate the number of bits needed for tag,
index, and offset based on the cache configuration, and then parse the address into tag, index, and
offset based on bit positions. We changed the video lecture to teach students how to derive a set of
hashing functions based on the cache configuration, and then how to apply those hashing
functions to derive the tag, index, and offset as decimal or hexadecimal numbers. Our mapping
function is presented slightly differently from Hennessy and Patterson’s textbooks [12]. We
include division within the hashing functions whereas the textbooks show calculating a block
index as a separate step. Figure 2 shows some screenshots from the video that show how the
mapping function changes with cache block size and number of sets. One slide was used to
explain how the hashing function parsed the binary bits (See Figure 3) into tag, index, and offset.
Similar changes were also required for videos that focused on temporal locality and
set-associative caches.

3.3.2 Group work and Homework

Prior to the experiment, homework questions related to overflow showed students n-bit binary
numbers and asked students to add them in binary and determine whether overflow occurred by
checking the value of certain bits in certain positions (spatial approach). We changed these
homework problems so that they showed students decimal numbers and asked students to add
them in binary and determine whether overflow occurred by using the modulus operation
(algorithmic approach). In-class group exercises were likewise changed.

Cache questions on homework and in-class group exercises were changed in the same way as the



Figure 5: New questions asking students to calculate the formula to map addresses to caches

Figure 6: This question asks students to read from the cache when a specific address is accessed.
The students are required to calculate tag and index fields for the address and compare them with
the given cache state. This comparison is easier if students calculate the tag and index field values
directly using the formulas introduced earlier. A calculator is provided to assist in the calculation



video lectures. Prior to the experiment, cache homework questions focused on asking students to
calculate the number of bits needed to encode the tag, index, and offset of a cache (shown in
Figure 4) and other questions asked students to parse binary addresses based on bit positions once
the number of bits for tag, index, and offset were known to determine whether memory accesses
resulted in hits or misses (spatial approach). These questions were changed to emphasize deriving
the hashing functions (shown in Figure 5) and then other questions required students to apply
those hashing functions to calculate the tag, index, and offset values (algorithmic approach).
Figure 6 shows the new question. Note that students are provided with a calculator and the tag
field in the cache is specified in hexadecimal with is easier to compare if students calculate tag for
the address using the hashing functions. Explanations and solutions for these questions were
changed to reinforce the new algorithmic approach.

3.4 Measures
There are three measurements for this study. Purdue Spatial Visualization Test [15] and ETS
Hidden Figures Test [18] to measure spatial ability for our students. The score from both tests is
aggregated to create a single measure for spatial ability. These tests are administered through an
optional assessment so the sample size for which we have spatial ability data is smaller than the
number of students enrolled in the course in each semester.

The second measurement is from quiz questions on the topic of number representations and
arithmetic. For this measurement we selected six questions from the first two proctored quizzes
that focus on students being able to calculate the results of an arithmetic operation on a computer
and flag if an overflow has occurred. These questions were developed before Fall 2021 semester
so they could be used in both semesters for a consistent measurement. We aggregated the scores
on these questions to create a measure for students’ performance on number representations and
arithmetic.

The third measurement is for the topic of caches. We considered all question related to caches
including the comprehensive cache performance analysis questions which require students to
calculate the number of hits and misses for a given code using large data structures. This meant
that all the questions from quiz 10 and three questions from quiz 11 were aggregated to create a
measure for students’ understanding of caches. One of the quiz questions is discussed in detail in
Appendix A.

A major underlying assumption in this quasi-experimental study is that student samples from
each semester belongs to the same population and the content changes are the only major factor
that could influence the scores. Since the content changes are only supposed to affect four quizzes
(two for number systems and two for caches), the scores for other topics should not be affected.
We calculated average score for each student across the remaining seven quizzes to create a
baseline measure for each students’ ability level. Averaging the quizzes for each student was a
reasonable choice because the quizzes carry equal weight for grading purposes in the course. The
average quiz scores for the students were used to verify the underlying assumption that students
come from the same population.



4 Results

As a quasi-experimental study, we first sought to verify that the student samples from both
semesters could reasonably be considered as belonging to the same population. The mean average
quiz score for Fall 2021 semester was 75.8% with a standard deviation of 33.4%. The mean
average quiz score of Spring 2022 was 79.5 with a standard deviation of 31.2. Levene’s test for
variance indicated that both samples’ variances are not significantly different with a p-value of
0.17. We conducted an independent samples t-test for average quiz scores with equal variance
assumption to compare the populations. The test indicated that the null hypothesis that population
means are different cannot be rejected at 95% significance level (p = 0.13). This means that it is
reasonable to assume that both samples belong to the same population for the purpose of this
study.

4.1 RQ1: Overall Student Performance
To evaluate the effect of changes in the instructional material on students’ overall performance on
quiz questions, we compared students’ mean score for the topics of number systems and caches
for the two semesters. We used independent samples t-test with equal variance (See Table 1 for
details). The instructional changes did not result in a significant difference (p = 0.674) in student
scores on the number systems quiz questions. The instructional changes did result in a significant
difference (p = 0.028) in student scores on the cache quiz questions with a small effect size
(0.19), corresponding to approximately a quarter of a letter grade.

4.2 RQ2: Spatial ability and instruction changes
For this question we want to find out if the instructional changes affected students with low and
high spatial ability differently. Ideally, we would want to see a bigger improvement for students
for low spatial ability as compared to students with high spatial ability because the changes are
geared towards removing reliance on spatial ability. We defined our high and low spatial ability
groups for Fall 2021 semester based on the median score. For Fall 2021 the median score was 89
(out of 100) and each group had 122 students. For Spring 2022, we used the median from Fall
2021 to divide the students into high and low spatial ability groups so that students with similar
spatial ability are compared with each other. Spring 2022 high spatial ability group had 180
students and low spatial ability group has 106 students.

Measure Fall 2021 Spring 2022 p-value
N mean(sd) N mean(sd)

Number systems 342 81.7(18.0) 305 82.3(19.6) 0.674
Caches 299 80.3(13.1) 249 82.8(13.1) 0.028

Table 1: RQ1: Results from t-tests comparing overall student performance across the two semester:
Fall 2021 (spatially focused) and Spring 2021 (algorithmically focused). There is no significant
difference in student performance on number systems quiz questions. There is a small (d = 0.19)
but significant improvement in student performance on cache quiz questions in the algorithmically
focused group.



Measure
Spatial
Ability

Instruction
Method

Interaction

Number systems < 0.001 0.793 0.620
Caches < 0.001 0.406 0.500

Table 2: RQ2: Results from two-way ANOVA tests where spatial ability (high vs. low) and
instructional method (spatial vs. algorithmic) are used as two independent variables and scores
on quiz questions are the dependent variables. p-values indicate that differences in spatial ability
correspond to differences in quiz performance, but that changes in instruction and the interaction
of instructional change and spatial ability did not yield a significant difference in performance. The
non-significant interaction term means that students with high and low spatial ability were affected
similarly by the instructional change.

Student’s spatial ability (high/low) and whether they took the course with or without the
instructional changes, provides two independent variables. The dependent variables are the scores
on number systems and cache quiz questions. We performed a two-way ANOVA to analyze the
effect of spatial ability and instruction changes on number systems score and cache score
separately. Table 2 summarizes the results of the two tests. For both cases, there was no
statistically significant interaction between the effects of spatial ability and instruction changes.
Simple main effects analysis showed that spatial ability had a statistically significant effect on the
scores (p < 0.01 for both cases). The effect of instruction changes was not statistically significant
for both number systems and caches. Note that this result is slightly different than the prior t-test
because many students did not take the optional spatial ability quiz.

Results from the ANOVA (Analysis of Variance) confirm that spatial ability is an important
determinant for performance in both topics, but our shift to an algorithmic instructional approach
did not affect the students’ performance. The non-significant interaction term shows that both low
and high spatial ability were affected similarly by the instruction changes and students with low
spatial ability did not benefit more than the students with high spatial ability.

4.3 Additional Analysis
The analysis for overall cache scores showed a small, statistically significant improvement with
the algorithmic approach. We performed a follow-up analysis looking at how students performed
on individual questions on the cache quizzes to understand the effect of changes in instruction and
whether there was any particular value to the algorithmic approach or the spatial approach. We
conducted a two-way ANOVA for each question (See Table 3). Two questions (Q4 and Q6) that
involved 32-bit hexadecimal addresses showed statistically significant improvement at 95%
significance level. One question (Q5) showed a significant decrease. None of these questions
showed a deep dependence on spatial ability. Two questions (Q2 and Q3) showed significant
dependence on spatial ability but were not affected by the instruction changes. None of the
questions had a significant interaction term.



Question
Fall 2021
mean (sd)

Spring 2022
mean (sd)

Spatial
Ability

Instruction
Changes Interaction

Q1: Read data from a given cache
state. 8-bit hexadecimal addresses. 95.7 (16.0) 95.6 (14.5) 0.615 0.775 0.786

Q2: Determine number of
hits/misses for code with simple
memory access patterns.

70.7 (36.9) 68.4 (37.8) < 0.001 0.254 0.495

Q3: Determine number of
hits/misses for code with complex
memory access patterns.

65.3 (19.7) 69.3 (19.6) < 0.001 0.178 0.546

Q4: Determine number of
hits/misses for a given address
sequence. 32-bit hexadecimal
addresses.

91.8 (23.4) 97.9 (4.25) 0.866 < 0.001 0.684

Q5: Update state of cache after
multiple memory accesses. 8-bit
hexadecimal addresses.

96.7 (10.2) 94.1 (14.5) 0.506 0.002 0.760

Q6: Find the address sequence
with given code. 32-bit
hexadecimal addresses.

77.1 (38.6) 87.8 (24.9) 0.086 0.003 0.328

Table 3: Two-way ANOVA analysis for questions used for caches quizzes. Sample size for Fall
2021 = 213 (Low Spatial Ability = 108, High Spatial Ability = 105). Sample size for Spring 2022
= 233 (Low Spatial Ability = 88, High Spatial Ability = 145). None of the questions showed
significant interaction between spatial ability and instruction changes. Two question that show
significant dependence on spatial ability were not significantly affected by the instruction changes.
Three questions were significantly impacted by instruction changes with two of them showing
improvement and one question showing a decrease in score.

5 Discussion

The results show that students’ performance on the cache quizzes improved slightly due to
instructional changes when taught using algorithmic hashing functions, but this performance did
not help students with low spatial ability more than students with high spatial ability. The analysis
of the individual questions revealed that students taught algorithmically got better at solving
questions that involved sequences of large addresses (Q4 and Q6) presented in hexadecimal
format, but not because of any effect on spatial ability. In contrast, these students performed
worse on a question with small addresses (Q5) and a cache visualized as a table.

Q6 suggests that the improvements for students taught algorithmically may simply be because
they got more practice in working with large hexadecimal addresses, increasing their comfort
with the base and notation. Q6 asks students to calculate a sequence of memory addresses
accessed for a given code without dealing with hashing functions but focusing only on locality
observations. Additional practice with hexadecimal addresses would best explain the better
performance on Q6, so that may also be the case for Q4.



The juxtaposition of Q5 and Q4 suggests another explanation. Q4 has 32-bit addresses for which
position-based parsing is quite cumbersome and error prone, whereas Q5 has short, 8-bit
addresses and shows the students how many bits are allocated to the tag, index, and offset by
displaying a pre-filled cache visualized as a table like in Figure 1. Hashing functions scale easily
with large addresses while bit position parsing does not. This contrast suggests that scaffolding
students with different representations at different times may be best, which may be part of why
Stieff et al. found the hybrid spatial and algorithmic instructional condition to be most
effective [8] .

Anecdotally, the undergraduate course staff helping the students during group activities
spontaneously reported that they found it easier to explain and answer the questions related to
hash functions using modular arithmetic (in Spring 2022) as compared to the previous semester
(Fall 2021) when answering questions about determining the number of bits for tag, index, and
offset and then parsing. Determining the number of bits for tag, index and offset for a cache has
been consistently tricky for students, so differences in performance may have been due to
students’ difficulties with this particular sub-task. Q4 in algorithmic instruction replaces the
number of bits calculations with a slightly easier hash function, improving performance. In
contrast, Q5 in spatial instruction gave students the number of bits for free, removing the tricky
sub-task, but Q5 in algorithmic instruction still required determining and executing the hashing
function, raising the difficulty bar slightly.

The questions that depend significantly on spatial ability are the cache performance analysis
questions (Q2 and Q3). Our earlier study showed that understanding how large data structures
map to the cache in a cyclic manner is an important factor in determining students’ performance
on this type of question [10]. These questions also used large hexadecimal addresses like Q4 and
Q6, but that improvement on Q4 and Q6 did not transfer to Q2 and Q3. Future studies will need a
more targeted focus on how spatial reasoning is a barrier for these specific types of tasks. Is the
barrier reading/visualizing code? Are students struggling with creating visualizations or tools to
aid their analysis? Is the challenge specifically with how large data structures in memory lead to
many-to-one mappings and these many-to-one mappings are spatially difficult to comprehend?
The lack of any difference in performance for number representations, suggests that the
algorithmic hashing function is unlikely to be a promising direction for helping students with low
spatial ability unfortunately.

A limitation of this study is the optional nature of the spatial ability quiz, which introduced
self-selection bias into RQ2. The sample for RQ2 and additional analysis for questions in the
cache score is limited to students who took the spatial ability quiz. The fact that the statistically
significant difference in cache scores in RQ1 disappears as a main effect in the RQ2 results
demonstrates the potential effect of this self-selection bias. This bias reduces the robustness of
our findings, especially at the individual question level, making strong conclusions impossible.
As a quasi-experimental study, there are almost certainly some unobserved differences between
students in the two different semesters. We controlled for baseline performance and instructor as
best we could, but there are probably still additional confounders that we cannot see.



6 Conclusion

In this paper, we described how we tried to address the achievement gap between students with
low spatial ability and students with high spatial ability for the topics of number representations
and caches within our computer architecture course. We shifted from spatially focused bit
position reasoning to algorithm focused modular arithmetic functions. While there were some
localized benefits to this shift in instructional methods, none of these improvements were tied to
an interaction between the instructional change and spatial ability. We did not find evidence that
this particular shift from spatial to algorithmic approach improved students’ performance, though
there might be other shifts away from spatial approach or a more intentional hybrid approach that
may still be effective. For this reason, picking and reinforcing appropriate tools and skills for
challenging topics may be a productive route for instructors to explore in their efforts to improve
their teaching.
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A Example Quiz Question

In this section, we show a complete example of a question where students performance improved. Figure 7 shows the
prompt for the question. The students are given a series of addresses which are accessed by a program. The students
need to determine which of the accesses are cache hits or cache misses. The students need to calculate tag and index
fields for each access. These values are then used to decide if an access is a hit or a miss. In the spatially focused
method, students would first calculate the size of tag and index fields. For the given example tag field size is 20-bits
and the index field is 5-bits. Then they would convert the addresses to binary representation to parse the addresses
into tag and index fields. At this point students could maintain the cache state using binary values for the tag or
convert it back to hex. If cache state is maintained using binary values then they need to compare long binary
numbers to determine hit or miss for each access. In the given example the binary values to compare would be 20-bits
long.

In contrast, using the algorithmic approach, the students can derive the mapping formulas from the cache size. For
tag this translates to a modulus with cache size i.e. address%4096. And for index the calculation would be
(address/128)%32 where 32 is the number of set is the cache. These calculations result in hexadecimal tag value



Figure 7: The figure shows prompt for one of the quiz questions. The students are required to
determine if the given accessed addresses are cache hits or misses. The calculator supporting
hexadecimal arithmetic is provided to help the students in calculating the tag and index fields
using the cache mapping formulas.

which is just 5 digits. This makes hexadecimal values easier to compare than binary values. Students also do not have
to image dividing the addresses into different fields. The solution for the problem where we show the calculated tag
and index values for each accessed address is shown in Figure 8.



Figure 8: Solution to the exam question. This solution is visible to the students only after student
have exhausted all the attempts for the question. We show the tag and index fields for the accessed
address and we also show the reason why the access was a cache hit or a cache miss.


