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Introduction

As artificial intelligence advances manufacturing corporations, this evolution redefines both
industrial business model innovation and reforms the manufacturing sector by using big data to
drive the manufacturing process and associated decisions. One of the most promising approaches,
Model-Based Enterprise (MBE), has shown its potential to drive smart manufacturing (or Industry
4.0) by linking all sources of digital data through the product lifecycle1. The global net value
of the MBE market has grown from $7.89 billion in 20172 to $9.94 billion in 20193, and
the forecast for the future market performance is set at about $44 billion by 2027. Beyond
upgrading manufacturing equipment, companies have sought to develop a digital model-based
network for higher production efficiency and a profitable return on investment. Unlike traditional
manufacturing, the next generation of manufacturing networks will provide seamless product
record-tracking and tracing capabilities for all parties, from customers to government regulatory
compliance agents using machine learning (ML) techniques4,5. The advances and implementation
of MBE in engineering enterprises critically influence the practice of design. As MBE presents a
unique opportunity to link all sources of digital data throughout the product lifecycle, we explore
how the requirement domain can be linked to the CAD domain. In addition to engineers interested
in machine learning implementations in product design, this research can benefit educators in
developing ML models for ME students. This would allow engineering changes to be tracked
both upstream and downstream for requirements and CAD analysis. For instance, design changes
originated from requirements can be implemented in CAD, and vice versa. Further, it is important
to consider how requirements and CAD can be visualized and realized during the early stages of
the design process to help engineers reduce the risk of project failure. This is particularly pertinent
as requirements often serve as the contractual agreement between parties, and thus all changes
and decisions must be aligned with the corresponding requirements. However, this is difficult to
perform as relationships between requirements and CAD are not formalized nor fully realized.
Often, correlations are manually determined by experts based on their heuristic knowledge. By
automating this process, engineers and designers would make AI-assisted decisions to provide
better designs6.

In this paper, the purpose is to develop a framework for performing a study to address the
requirement analysis challenges associated with engineering education in building digital threads
for Industry 4.0. Digital threads in manufacturing can be divided into four domains: design
requirements, CAD, computer-aided manufacturing (CAM), and quality inspection7.Tracing
digital information across domains presents unique challenges in complex systems, primarily due
to the high volume, complexity of requirements management, and the difficulties in interpreting
them resulting from change propagation. Current CAD education primarily focuses on teaching
low-level skill sets, whereas Industry 4.0 engineering would require the ability to combine
domains such as requirements-CAD and CAD-CAM. Engineering design changes are often
derived from requirements documents and propagated to CAD and CAM systems. However,
it is also important to emphasize the importance of back propagation of information in design
education. As an example, engineers must assess the compatibility of new design parts with
existing design requirements efficiently in order to streamline the future design process and use
design reuse strategies. The complexity of the data sources makes cross-domain analysis difficult
as changes are often observed within each domain. In the initial conceptual design phase (i.e.,



requirement management), requirement changes have been defined into four categories and studied
the different change patterns over time8 with the likelihood of change propagation9. Researchers
can further predict the higher-order change propagation for a complex system10. In addition,
engineering changes can be analyzed on a lexical, syntactic, and structural level11. For mechanical
modeling (i.e., CAD), most extant literature focused on applications related to graphics, analysis of
components, computer numerical control, and manufacturing processes12, but few research studied
how to group CAD components with requirements to jointly represent design knowledge.

Challenges in Model Based Enterprise

Though MBE can offer such significant advantages, admittedly, some obstacles make the transition
from current manufacturing practices more difficult13. Besides the technical difficulties of
implementing MBE in design curriculum5, it is challenging to synthesize data from multiple
sources to formulate new insights and meet educational needs. As a result of geopolitical,
economic, and regulatory uncertainty, the major smart manufacturing initiatives have had a limited
impact on industrial infrastructure and educational programs.

An urgent need exists for focusing educational and training programs on equipping the future
workforce with the necessary knowledge and skills to gather, manage, and improve product
information. Many practical challenges remain unsolved to achieve this goal. First, managing an
entire information system requires a more efficient business and operating model, which enables
the model-based system to manage automation, optimization, and decision-making across different
manufacturing infrastructures. Second, every organization utilizes various product lifecycle
management (PLM) tools/software to build a fully designed model, and not many companies can
afford such integrated software shared with their suppliers. In response, Model-based enterprise
(MBE)*software (i.e., Syndeia†) integrates different domain platforms with various standard-based
data, using digital threads. The goals of MBE are data repair, synchronization, and sharing, while
digital threads connect the information flow among all phases of the product lifecycle7. Moreover,
many leaders of major manufacturing sectors accept the MBE concept and envision that MBE
can reduce the cost of the technology management process by 50% and reduce time to market by
45%14,15. While digital threads as a concept exist, there is still a lack of detailed techniques and
formal studies used to support decision-making in data management16. This study addresses such
issue by providing a method to bridge the information gap between design requirements and CAD
models.

Educational Issues and Related Theories

As CAD becomes the essential method to convey and deliver design artifacts, the extent to which
a student is equipped with desired representational fluency contributes to the understanding and

*Model-based enterprise and model-based engineering are indistinguishable terms. For clarity, MBE is defined as
follows1:

• Model-based enterprise refers to an organization that uses model-based engineering.

• Model-based engineering is a strategy for product development, manufacturing, and lifecycle while using a network
approach (i.e., digital threads) to connect engineering activity.

†http://intercax.com/products/syndeia/



quality of their engineering work. The scenario of this work situates in bridging the written
design requirement descriptions and the visualized CAD design artifacts. Engineering students
in training might find it challenging to map the CAD models and the design requirement due
to underdeveloped representational fluency. Scholars have long established the important roles
of representational fluency in model development17,18. The well-known Lesh Translation Model
(LTM) could be used as a framework to articulate the learning challenges presented in this
study - students’ conceptual understanding of the representations on the design task, and their
translations among and within representations around the requirements19. LTM proposes the
interaction of five forms of representations: 1) Realistic: representation through realistic and
lived experiences informed contexts or metaphors; 2) Symbolic: written symbolic representation;
3) Language: spoken or written representations; 4) Pictorial: graphic representation; and 5)
Concrete: manipulatable modeling representation19,20. The model indicates that to improve
students’ representational fluency it is critical to support students’ ability to understand and
translate the concepts and situations via and among the five types of representation21,19,20. Thus, the
deliverable of this research project could provide a learning tool for students to embody the written
design requirements and translate between written and pictorial (CAD drawing) representations.

Research Aims

This study is comprised of a two-stage investigation for requirement management followed by
CAD. We aim to answer two research questions for a given product: how to build a model that
correlates written requirements with CAD drawings, and how to make sense of these correlations.
As a first step in answering these questions, Figure 1 illustrates the association between knowledge
representation and CAD requirements. For instance, design requirements might not necessarily
describe all of the design details for CAD, and CAD component designs cannot directly translate
the design specifications back to requirements. The current literature lacks a descriptive method to
define the connectivity among CAD components. Thus, if requirement sentences and CAD data
can be represented in vector space, we can develop a model that can learn the association between
images of CAD components and corresponding text. To simplify the correlations, we assume that
each requirement can be correlated with one CAD image. Using a zero-shot learning algorithm,
the results are validated with the judgments of domain experts. By using joint embedding methods,
text-image pairs can be learned simultaneously while maintaining functional reasoning from
requirements. Further, a proof-of-concept study provides evidence and discusses how CAD can
be integrated into engineering education.

RELATED TECHNICAL BACKGROUNDS

This paper discusses how to link requirement management and CAD with engineering education
practices through the design of a digital thread. This section introduces the necessary background
with the connections among requirement management, CAD models, and joint embedding
methods to support future educational needs.



Figure 1: A flow chart of coding process to build digital threads for MBE7

Requirement Management

Requirements play a critical role in the conceptual design phase, and they are often presented
as a list of documents containing product design specifications/constraints22,23. By consulting
stakeholders, users, customers, or suppliers, requirements clarify design tasks and record
the limitations for product development24,25,26,27. For a complex system, it is difficult to
test and evaluate the propagation of engineering changes across the entire requirements
documentation8,28,29,30. Moreover, the design is an iterative process, and any initial changes
might result in an unanticipated change propagation due to different representations or insufficient
communication among designers31,32,33. To predict the most likely consequences, requirement
propagation is defined based on their types and purposes11,34. Much existing commercial software
(i.e. IBM DOORS35 or JAMA‡) and many research tools (i.e., ARCPP23, ROM Client11)
can manage requirement repositories36,37,38,39. An alternative method is the design structure
matrix (DSM) (i.e., affinity matrix, A ∈ Rn×n ), which represents the relationship between the
requirements of a complex system for tracing potential changes propagation40,41,42,43. Each element
of DSM defines a document or unique word. The off-diagonal component reveals the dependency
of the pairwise comparison between any two subcomponents. Within DSM, various techniques
can analyze and categorize requirements into subgroups/sub-diagonal blocks based on the concepts
(words)44,45,46,47. DSM can be used to generalize correlations among requirements into a matrix
representation, thereby reducing the number of dimensions in subsequent analysis. However, both
approaches are incapable of representing the CAD models. To address this challenge, this study
describes a scheme that correlates requirements (both functional and non-functional) with images
of CAD designs. Upon successful completion, this work will improve the chance of ensuring
that the product design meets all specifications, allowing for a more efficient design process. The
established correlations allow designers to quickly and accurately modify designs that meet the
desired requirements, while also providing the ability to quickly update and refine the design as
needed.

‡https://www.jamasoftware.com



Computer-aided Modeling

Computer-aided engineering (CAE) refers to the use of CAD software to simulate geometric
models. As the 3D CAD model replaced engineering sketches/drawings, digital documents
have improved the reusability, accessibility, and quality of engineering model designs48,49,50. 3D
CAD representation contains a set of distinct parts, such as geometric objects generated in CAD
format, including completed product components and assemblies (i.e., product materials and
manufacturing information)15,51. In industrial practice, engineers interpret system requirements
and create CAD models to meet the design goals for every step of the product lifecycle.
Any product design modification would result in a time-consuming procedure to increase the
potential system failure10. In response, our goal is to associate CAD models with corresponding
requirements and reduce the liability of changes in a complex system by using joint embedding.
Thus, this proposed study would be able to utilize the CAD model in the form of 2D images, then
finetuning the model to obtain domain knowledge.

Joint Embedding

With the advances of image processing techniques, joint embedding has become one of the merging
research area for engineers to develop and implement52. In design education, joint embedding can
learn the correlations of different types data representations in a latent space. By either training or
finetuning models, students can build an AI and explore the different approaches to learn domain
specific knowledge. During the learning process, the goal of joint embedding loss function is to
make the positive pairs closer while avoiding trivial solution. The most popular training methods
are contrastive methods53, non-contrastive methods54, and cluster methods. To evaluate model’s
performance, different classification or clustering techniques are developed for various purposes.
One of the biggest challenges in real-world applications is predicting conditions that a ML model
has not yet encountered. To overcome these issues, zero-shot learning is often used to predict the
case using a model that has never been seen before. A good model would be able to provide the
most likely prediction based on the learned patterns. The next generation of engineers must learn
how to perform such tasks and build models that combine different types of knowledge to solve
unforeseen problems.

CLIP is a contrastive learning model trained on 400 million image and text pairs from a combined
dataset, WebImageText (WIT). Aside from the large amount of training datasets, the architecture
of this model allows the interchange of different types of image and text encoders, which maintains
the ability to switch between pre-trained models. To identify the correlation between words and
images, image classification tasks and zero-shot predictions are often used to evaluate model
performance. Unlike standard image classification tasks, real-life tasks may contain more diverse
instances than training data. Often, zero-shot learning is used to evaluate the performance of a
model to overcome these unforeseen challenges.

Requirement Datasets

In this paper, an in-house industrial requirement dataset is used to demonstrate how
domain-specific tasks can be performed through joint embedding. Project A is designed for a
manufacturing company to design, program, and install threading line equipment. It contains



seventeen general sections varying from general descriptions to technical specifications. The total
number of requirements is 350 and a simple data preprocessing procedure is used to eliminate
non-alphanumeric characters (e.g., “-”).

Cleaning Text Data: Text preprocess is an operation to transform every text into its canonical
form. A standard preprocess is necessary for certain models which are sensitive to inputs due
to the presence of many stop words in the requirement documents. Lowercase, tokenization,
lemmatization, and punctuation have been included in this preprocessing step using Python Spacy
Package. Since some of the high-frequency words might still offer some values in representing
the structure of requirements, only certain stop words have been eliminated under scrutiny. We
also assume nouns, verbs, adverbs, and adjectives have equally important roles in capturing the
semantic representations among requirements. For instance, Table 1 shows the difference before
and after this preprocessing.

Table 1: One example of requirements from the Project A

Original Requirement:
2.2. Each station shall be able to accomodate casing length of API Range Three from thirty four feet to forty eight feet.
After Pre-process:
station able accomodate case length api range three thirty four foot forty eight foot

Methods

The purpose of this section is to discuss how to finetune a pre-trained model using both industrial
requirements documents and synthetic image datasets.

Fine tune CLIP model: As part of this study, we provide insights into how to integrate different
types of techniques into a data science project to teach future engineers how to enhance the
capabilities of MBE. To implement a joint embedding model, such as CLIP, both text and images
must be paired for training or fine-tuning. Certain industrial projects are always challenged by a
lack of data. Different synthetic image generation methods can be implemented to fill in the gaps
in the image datasets. The availability of many variations of design products on the Internet makes
it possible to find similar images using keywords to capture the main features of the products.
Image retrieval is one of the techniques adopted to collect online images based on search queries
generated by each requirement. Each query contains several phrases or keywords derived from
the requirements. Various approaches exist for determining the number of appropriate keywords
to represent the semantic meaning of each requirement. It is necessary for designers to apply and
compare a variety of approaches depending on the specific requirements of each project. Part
of speech (POS) tagging is the most common approach to extracting keywords. Once keywords
have been generated, designers can send search queries to image search engines to retrieve online
images. Depending on the quality of the keywords, the returned image may have a variety of
representations. Filtering out or replacing irrelevant images may require a manual process. We can
then feed data to a pre-trained model for finetuning for all 350 requirement sentence-image pairs.

Often, engineers use pre-trained models to perform downstream tasks in a real-world system. The
ability to transfer existing knowledge into a different domain becomes increasingly important for



developing applications in MBE. This study uses images of variation design products as inputs
to fine-tune the model. Taking a picture of a system from a random angle and mapping out
the relevant requirements contains numerous practical challenges in a real-world application. In
certain cases, requirements documents may only pertain to a few key components in a system,
resulting in many-to-many correlations. One of the challenges in computer vision is to solve this
problem. We are testing whether the model can learn patterns from training data by implementing
images with certain similarity. Following the fine-tuning of the CLIP model, the testing image
will be used to compute the cosine similarity among 350 requirements in terms of probability
values. A comparison of predicted results can be made between pre-trained and fine-tuned models
based on heuristic knowledge from engineers. As the pre-trained model has accumulated extensive
knowledge of the world, training a pre-existing model on a new dataset might provide additional
insight. To determine the performance of a model, designers can analyze the quality and quantity
of the most relevant requirements based on their heuristic knowledge.

Results

This section describes the performance of the fine-tuned model with respect to its educational
purposes. To build future MBE applications, engineers must develop their own models and perform
a variety of downstream analyses. In Figure 2, we present a conceptual illustration based on
the model’s prediction and the most relevant requirement documents. This background image is
selected to test the zero shot prediction for a new conveyor system that has never been seen before
by the model. Top three requirement predictions are selected and evaluated based on the heuristic
knowledge of designers. As requirements are sorted according to their relevance, gradients can
range from green to red, indicating the degree of relevance. The final result is only disclosed as
keywords due to reasons of confidentiality.

Figure 2: Conceptual user interface for generating results based on joint embedding to correlate
existing requirements with CAD images



Building a new product from scratch can be a time-consuming and costly process. Many industries
reduce costs by transferring an existing design to a new product or modifying an existing product
to meet additional design needs. A further application of this result can provide designers with
a knowledge system to help develop projects in a preliminary design phase. In the process
of redesigning, engineers could scan images of product defects or CAD models to identify the
system’s weakest link or determine which requirements should be modified to increase the design
buffer. The use of a pre-trained model can facilitate the transfer of knowledge from previous
products to new ones when building new designs. With the continued complexity of future
products, the future of decision-making will be dependent on collaboration between engineers
and AI. In the field of design and manufacturing, this step is critical to the preparation of future
engineers.

Joint embedding models coupled with an interface would enable engineers to modify designs
more efficiently. Rather than reviewing a large text document and manually determining the most
pertinent requirements, a future application will integrate an AI assistant to assist the designer in
identifying the most vital functional requirements. Since the cost of making changes for functional
requirements increases exponentially over time, identifying and controlling engineering changes
at an early stage will be crucial to reducing the failure rate of a product. A knowledge system like
this could help private sectors improve their cost-efficiency and increase their productivity in the
design process.

Limitations: Several technical limitations of this work and how we assessed the future of work are
discussed. Joint embedding is a prominent technique to transfer knowledge from previous designs
to the new tasks. However, this study only explore CLIP model with its potential applications.
Further exploration of important factors affecting the quality of fine tuning a model and transferring
knowledge to a new domain is still not well understood. A variety of industrial requirement
datasets, as well as different joint embedding methods, should be evaluated for comparing and
testing model performance.

Discussion

Design pedagogy at present does not place enough emphasis on bridging requirements and CAD
into the design curriculum to improve students’ representational fluency - students are taught
how to build correlations manually. As the future of work deals with complex design, building
model-based enterprises becomes increasingly imperative for performing inter-domain analysis.
This study provides general instruction on how to implement joint embedding on a pre-trained
model to fine-tune for a domain specific design task. The results demonstrate improved correlations
between requirements and mechanical designs. By implementing joint embedding in engineering
complex design, the future application of this study can enhance students’ representational fluency,
especially between language and pictorial representations, and improve design productivity and
efficiency.
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