
Paper ID #38288

Biomedical and Agricultural Engineering Undergraduate Students
Programming Self-Beliefs and Changes Resulting from Computational
Pedagogy

Ms. Joreen Arigye, Purdue University

Joreen Arigye is a Ph.D. student in the School of Engineering Education at Purdue University. She holds
a M.S. in Information Technology from Carnegie Mellon University and a B.S. in Software Engineering
from Makerere University. Her research interests include computational modeling, data analytics, and
computation in STEM Education.

Dr. Alejandra J. Magana, Campbell University

Alejandra J. Magana, Ph.D., is the W.C. Furnas Professor in Enterprise Excellence in the Department
of Computer and Information Technology with a courtesy appointment at the School of Engineering
Education at Purdue University. She holds a B.E. in Informa

Mr. Joseph A. Lyon, Cornell University

Joseph A. Lyon is a Lecturer for the College of Engineering Honors Program at Purdue University. He
holds a Ph.D. in Engineering Education. His research interests are computational thinking and mathemat-
ical modeling.

Elsje Pienaar

©American Society for Engineering Education, 2023

Evidence-based practice: ASEE

Biomedical and Agricultural Engineering Undergraduate Students

Programming Self-Beliefs and Changes Resulting from Computational

Scaffolding

Background: The growing demand for computing skills in all science and engineering-related

fields begs the question of how college graduates in science and engineering can be best

equipped with computational thinking and computer programming skills. Therefore,

computational practices need to be integrated into the science and engineering curricula sooner

and more often.

Purpose: This study investigated undergraduate students pursuing biomedical and agricultural

engineering majors and the changes in their self-beliefs about programming for approaching

engineering problems. Specifically, we wanted to understand if the students' self-beliefs changed

as a result of implementing three two-week-long computational assignments throughout the

semester facilitated through computational scaffolding. The computational scaffolding was

embedded within computational notebooks and was grounded in evidence-based practices

aligned with cognitive apprenticeship methods.

Methods: The study was conducted in a second-year thermodynamics course offered at a large

Mid-Western University. The objective of the course was to understand and exploit basic

principles of thermodynamics as they apply to biological systems and biological processes and

model these processes using computer code. Pre and post-data were collected using a survey

instrument at the beginning and the end of the course. The survey instrument captured students'

perceptions toward five aspects related to their experience with programming, i.e., self-efficacy,

self-concept, interest, anxiety, and aptitude mindset. 100 students who completed both surveys

were considered for the final analysis.

Results: Based on the constructs used to capture students' programming experience, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset, results indicate an average positive

increase in only programming self-efficacy. The rest of the constructs maintained a neutral or

undecided position.

Implications: The study indicates that undergraduate engineering students reported a neutral or

undecided experience during programming in the computational modeling course, specifically

for programming self-concept, interest, anxiety, and aptitude mindset. These findings can be

potentially useful for implementing course interventions to improve engineering students'

experience.

1. Introduction

Engineering equips students with the ability to use their mathematical and scientific principles to

build models of real-world systems and to simulate their behavior which allows them to

understand complex phenomena, innovate around them, and even make predictions. Modeling

and simulation then becomes a fundamental skill set across engineering disciplines. Multiple

calls have been made for increased incorporation of modeling and simulation in science and

engineering classrooms [1], [2]. Clark and Ernst [3] further emphasize that by having courses

that link science and mathematics to technology through the development of both computation

and physical models, STEM content integration can take place for students. Many times,

however, these practices can be difficult for engineering students to learn [4] and for engineering

faculty to teach [1]. As such, computational modeling skills and practices are often undertaught

by instructors and underdeveloped among graduating students.

Fortunately, work in engineering and physics education has started to document effective ways

for delivering computation instruction through scaffolding, e.g., [4]–[7]. Even with these strides,

research has indicated that incorporating computational modeling and simulation can lead to

"cognitive overload" from having to learn and model different representations, such as physical,

mathematical, and algorithmic, on top of the programming challenges. [8], [9].

This study investigates the effects of computational modeling and simulation, where students

reported their levels of caring and enjoyment before and after modeling exercises. In particular,

the pre and post-survey data capture students' perceptions of their programming self-efficacy

beliefs, self-concept beliefs, levels of anxiety, aptitude mindset, and interest. This leads to the

following research question: Do students' perceptions of their own computational abilities

change after participating in computational modeling and simulation projects?

2. Theoretical Framework

The theoretical framework that guided the design of the learning intervention and the focus of

our research design was grounded in the theory of the Zone of Proximal Development (ZPD).

The ZPD was proposed by Lev Vygotsky as a sociocultural theory that describes learning and

development [10]. The ZPD conceives learning as the space between what a learner can do

without assistance and what the learner can do with competent assistance. A common way to

translate implications from the ZPD to the design of learning interventions is by providing

students with scaffolding. Scaffolding refers to all types of support and guidance offered in the

classroom either by the instructor or peers or supported by technology [11].

In the context of higher education, scaffolding refers to teaching techniques or tools that support

students' learning. Students are provided with learning supports that help them accomplish tasks

that they normally would not be able to accomplish on their own or will pose a significant

challenge. As students acquire specific knowledge and skills, those supports are eventually

removed as they can apply the learning skills independently.

In the context of engineering education practice, providing students with scaffolding is highly

recommended when the faculty is not available to provide help (i.e. while solving a homework

assignment or projects outside of the classroom). Specifically, in the context of computational

assignments, scaffolding methods can involve (a) short video lectures explaining difficult

concepts, (b) worked-out examples demonstrating and explaining difficult calculations or

implementations of a particular function, (c) templates of code that can get students started with

implementing their computational solutions, and (d) test cases for evaluating computational

solutions [12].

Research studies have also explored the link between providing students scaffolding on difficult

tasks and how those have enhanced students' self-efficacy beliefs [13]. An efficacy belief refers

to the conviction of an individual that they can successfully execute a behavior required to

achieve a specific goal, action, or outcome [14]. Self-efficacy beliefs are essential in the learning

process because they result in agency, control, and intention to pursue courses of action [15].

The constructs used in this study are defined as follows based on Scott and G. Ghinea’s

instrument [16]. Self-efficacy captures “learners’ cognitive self-assessment of whether or not

they are confident in their ability to write and debug simple programs” [p. 125]. Self-concept is

“a composite of self-perceptions that one can be a good programmer, which is formed through

experience with and interpretations of one’s environment” [p. 125]. Interest is “the extent to

which an individual enjoys engaging with programming-related activities”[p. 124]. Anxiety is

the “self-reflected state of experiencing negative emotions, such as nervousness or helplessness

while writing and debugging programs” [p. 125]. The programming aptitude mindset represents

“the strength of a learners’ belief in the notion of a fixed programming aptitude (e.g., aptitude is

inherent and cannot change)” [p. 125].

The implications of the theoretical framework for this study then relate to the integration of

scaffolding approaches to support the development of computational practices and how those

experiences may improve students' self-beliefs in their programming abilities.

3. Methods

This intervention study employed quantitative methods to answer the research question, which

focused on identifying the changes in students' perceptions of their own computational abilities

after a computational modeling activity.

3.1. Context and participants

The context of the study was a second-year thermodynamics course offered at a large Mid-

Western University in the USA. The objective of the course was to understand and exploit basic

principles of thermodynamics as they apply to biological systems and biological processes and

model these processes using computer code. Pre and post-data were collected using a survey

instrument at the beginning and the end of the course. The survey instrument captured students'

perceptions toward five self-beliefs related to their experience with programming, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset.

The population considered for the final analysis consisted of 100 students that completed both

surveys. According to institutional data, in 2021-2022, about 56% of the students pursuing

biomedical engineering majors were women, and about 44% of the students were men. The

majority of the students were White 67%, followed by Asian 21%, International 10%, more than

two races 6%, Hispanic or Latino 3% and Black or African American 2%. The students were

organized into a total of 24 teams, each with four or five members.

3.2. Learning Design

The intervention in this study aimed to facilitate the acquisition of both disciplinary knowledge

and computational skills, consisting of three two-week-long computational projects implemented

throughout the semester. The projects were titled; Could you outrun a Dinosaur (P1), Toxin-

Antitoxin system design (P2), and Chemical Reactor Stability and Sensitivity (P3).

Computational notebooks were used to deliver scaffolding methods since they provide the

platform to include detailed explanations, guidance, and scaffolding throughout the project

solution. Computational notebooks are defined as computational essays that use text, along with

code programs, interactive diagrams, and computational tools to express an idea [7]. The

importance of computational notebooks is to provide programming environments for developing

and sharing educational materials, combining different types of resources such as text, images,

and code in a single document accessible through a web browser [17]. These are specific ways in

which the projects were scaffolded to guide students:

• The tasks for each project were broken down into smaller sub-tasks. For example, as

shown in Table 1 below, the sub-tasks included planning, collecting data, defining

functions, performing calculations, and visualizing results.

• A detailed outline or a step-by-step guide was provided for each sub-task. This guide

provided clear instructions on what the students needed to do along with examples

such as code snippets and embedded video guides.

• Pre-written code was provided for necessary coding sub-tasks. The code would be

partially complete, with some placeholders or comments for students to fill in. This

aim was to help students understand the structure of the code and provide a starting

point of what they needed to do at each step.

• Students were prompted to provide explanations for their visualizations to articulate

their understanding and knowledge of the relevant sub-tasks. The aim was to

reinforce students’ learning and improve their ability to communicate these complex

ideas.

• For the coding sub-tasks, students were required to add meaningful comments to their

code. The aim was to communicate their thought process and code structures and to

help students collaborate by ensuring that team members can easily read and follow

the code.

• When applicable, sample data was provided.

The computational learning objectives for the projects were to:

• Organize and input data efficiently

• Visualize data by plotting arrays

• Perform simple calculations and computations using arrays

• Utilize linear modeling for data analysis

• Utilize built-in tools to numerically create, solve, and visually represent ordinary

differential equations.

• Utilize for-loops to iterate over arrays of parameters and carry out computations.

• Calculate steady-state values for state variables by utilizing built-in tools and

functions.

Table 1 presents specifics of the learning objectives and the high-level tasks for each of the

projects. The projects contained planning, coding, task reflection, and assignment reflection.

Table 1. Overview of learning objectives and tasks for each of the projects

 P1. Could you outrun a

dinosaur

P2. Toxin-antitoxin system design P3. Chemical reactor stability

and sensitivity

Objectives Collect and visualize data

accounting for noise and
uncertainty

Compute and interpret

dimensionless quantities

Interpret and analyze data and

resulting dimensionless

quantities

Describe complex biological systems using

models of genetic circuits

Characterize and describe dynamics in a

given system of biological

Interactions

Evaluate and test possible system structures

to achieve a stated goal

Construct and analyze mass

and energy balances

Incorporate endo- and exothermic

reactions into mass and energy

balances

Interpret and characterize systems

at, and away from, steady state

Predict operating conditions to

achieve a stated goal in a
bioreactor

Planning Before you start - plan your

solution

Before you start - plan your solution Before you start - plan your

solution

Task #1 Collect data. System of differential equations that

describe the dynamics of the biological
system

Mass balance at steady state

Task #2 Plot velocity as a function of

stride length

Predict what the dynamics of receptor,

toxin, and antitoxin levels are over time

Reflection on results from Task 2

Energy balance at steady state

Task #3 Plot velocity as a function of

s/l

Include 1 or 2 regulatory modules for

activation of anti-toxin production

Reflection on results from Task 3

Characterizing the steady state

behavior of the system for an

isothermic reaction

Reflection on steady-state

analysis of isothermic reactions

Task #4 Transform velocity to a

dimensionless form

Find a combination of up to 3 gene

regulatory modules that can meet the design

criteria

Reflection on results from Task 4

Characterizing the dynamic

behavior of the system for an

isothermic reaction

Reflection on not in steady-state

analysis of isothermic reactions

Task #5 Plot dimensionless velocity as

a function of s/l

 Characterizing the steady state

behavior of the system for
exothermic reactions

Reflection on steady-state analysis

of exothermic reactions

Task #6 Fit a line through your data Dynamics toward different steady

states with a fixed value of 𝜏

Reflections on dynamics and

multiple steady state observations

Task #7 Calculate the velocity for your

dinosaur

Task #8 Advise your fellow group

members on operation dino
egg

Reflection

Post assignment reflection

Post assignment reflection

Post assignment reflection

3.3. Data Collection

A pre-survey and post-survey regarding caring and enjoyment of computation were administered

at the beginning and end of the semester, respectively. The specific survey instrument used was

the Scott and Ghinea’s [16] instrument to assess student self-beliefs in CS1. The survey

consisted of a 5-point Likert scale ranging from strongly disagree (1 point) to strongly agree (5

points), capturing students' perceptions of their programming self-efficacy beliefs, self-concept

beliefs, level of anxiety, aptitude mindset, and interest.

3.4. Data Analysis

The study used descriptive and inferential statistics to analyze the data in order to answer the

research questions. The survey questions were analyzed quantitatively by deriving the difference

between the individual pre and post-test scores for each student for each construct, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset. The differences between the pre

and post-test scores were then compared using a t-test to infer any significant differences. 100

students that filled out both the pre-and post-course survey were considered for the analysis.

4. Results

The results of the analysis indicate that statistically significant differences were observed in all

the questions under student’s reported self-efficacy, two questions under the reported self-

concept, one question under reported anxiety, and one question under reported aptitude mindset

as shown in Table 3 below.

In total 19 different tests were conducted and 9 of them were statistically significant. One

limitation of running multiple hypothesis tests can be an increased chance of making a type I

error. But since we primarily wanted to identify individual significant results and we did not

have a strict requirement for maintaining an overall level of significance, we did not implement

the Bonferroni correction.

The results indicate that reported self-efficacy had the most significant changes. Two questions

under reported self-concept i.e. “I am just not good at programming” and “In my programming

labs, I can solve even the most challenging problems” were significant. One question under

reported interest i.e. “I am interested in the things I learn in programming activities” was

significant. One question under reported anxiety i.e. “I get nervous when trying to solve

programming bugs” was significant and one question under reported aptitude mindset i.e. “ To

be honest, I do not think I can really change my aptitude for programming” under reported

aptitude mindset was significant.

Table 3. Pretest and Post-test transition tags for self-belief constructs

Self-beliefs Construct Pre Post T statistic

Mean, SD Mean, SD P-value

Self-efficacy I am confident that I can understand Python

scripts

3.11, 1.14 3.87, 0.88 6.21, <0.0001

I am confident I can solve simple problems

with my programs

3.77, 0.84 4.14, 0.74 3.65, 0.0004

I am confident I can implement a method

from a description of a problem or algorithm

3.36, 0.92 3.83, 0.82 4.11, <0.0001

I am confident I can debug a program 3.38, 0.94 3.87, 0.91 4.627, <0.0001

Self-concept I am just not good at programming 2.72, 1.12 2.37, 1.00 -3.07, 0.002

I learn programming quickly 3.36, 0.98 3.27, 1.03 -0.90, 0.368

I have always believed that programming is

one of my best subjects

2.31, 1.08 2.44, 1.16 1.28, 0.201

In my programming labs, I can solve even

the most challenging problems

2.49, 1.03 2.87, 1.12 2.29, 0.024

Interest I enjoy reading about programming

2.43, 1.03 2.40, 1.04 -0.225, 0.822

I do programming because I enjoy it 2.76, 1.11 2.94, 1.17 1.59, 0.114

I am interested in the things I learn in

programming activities

3.69, 0.77 3.38, 0.98 -2.97, 0.003

I think programming is interesting

3.86, 0.73 3.76, 0.89 -1.13, 0.259

Anxiety I often worry that it will be difficult for me to

debug my program

3.39, 1.06 3.17, 1.12 -1.84, 0.067

I often get tense when I have to debug a

program

2.98, 1.11 2.97, 1.18 0.07, 0.940

I get nervous when trying to solve

programming bugs

3.04, 1.14 2.74, 1.20 -2.13, 0.035

I feel helpless when trying to solve

programming bugs

2.89, 1.09 2.64, 1.07 -1.87, 0.064

Aptitude

mindset

I have a fixed level of programming aptitude,

and not much can be done to change it

1.89, 0.72 2.05, 0.85 1.72, 0.088

I can learn new things about programming,

but I cannot change my basic aptitude for

programming

2.32, 0.92 2.42, 0.96 0.82, 0.410

To be honest, I do not think I can really

change my aptitude for programming

1.86, 0.74 2.06, 0.76 2.09, 0.038

5. Discussion and Implications

This study investigated whether students' perceptions of their own computational abilities change

after participating in computational modeling and simulation projects, which are captured as

students' perceptions of their programming self-efficacy beliefs, self-concept beliefs, level of

anxiety, aptitude mindset, and interest. The overall findings suggest only students' perceptions of

their programming self-efficacy beliefs increased. For the rest of the constructs, although some

changes were observed in specific questions within each of the constructs, they were not

consistent. Thus, we can conclude that students’ perceptions of their self-concept, interest,

anxiety, and aptitude mindset remained undecided or neutral after the computational modeling

and simulation projects.

The self-efficacy beliefs construct consists of the student's confidence to understand Python

scripts, the student's confidence to solve simple program problems, the student's confidence to

implement a method from a description of a problem or algorithm, and the student's confidence

to debug a program. Self-efficacy can be a key factor in students' academic success and future

career choices in engineering. Self-efficacy defined as "one's self-judgment concerning

capability", is an important mediating factor in cognitive motivation [18]. In engineering,

students with high levels of self-efficacy tend to have better problem-solving skills, greater

resilience in the face of challenges, and more positive attitudes toward their coursework and

future careers [19].

Another important aspect of self-efficacy is its relationship to the retention of women in

engineering. Self-efficacy can play an important role in the success and persistence of women in

engineering. Research shows a mixed view of women's engineering self-efficacy and gender

differences for engineering self-efficacy, even though researchers tend to agree that self-efficacy

is an important concept in academic pursuits and career decisions [20].

The implications of this study relate to the use of scaffolding methods to support students in their

learning processes, particularly as related to computational assignments. The findings suggest

that the scaffolding delivered via the computational notebooks was sufficient to help students

succeed in completing their computational projects and developed more confidence in their

programming skills.

6. Conclusion, Limitations, and Future Work

This study found that participating in computational modeling and simulation projects can

positively impact students' perceptions of self-efficacy in computational tasks. Improved

confidence in programming during these projects can have a positive impact on students'

attitudes toward engineering and potentially increase retention rates in the field. These are

encouraging findings for engineering educators at all levels.

However, the study has some limitations, such as having a smaller sample size and focusing only

on perception which is only part of the larger story. As part of future work, demographic

information can be used as a covariate for further analysis of self-efficacy given that prior

experiences play a heavy role in student self-efficacy. Future studies could consider alternative

methods to the ones presented here to gain a more comprehensive understanding of the impact of

different types of computational scaffolding on students' self-beliefs in engineering.

Acknowledgments

This work is based upon efforts supported by the EMBRIO Institute, contract #2120200, a

National Science Foundation (NSF) Biology Integration Institute. The views and conclusions

contained herein are those of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of NSF or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright annotation therein.

References

[1] A. J. Magana and G. Silva Coutinho, “Modeling and simulation practices for a

computational thinking-enabled engineering workforce,” Computer Applications in

Engineering Education, vol. 25, no. 1, pp. 62–78, Jan. 2017, doi: 10.1002/cae.21779.

[2] D. E. Penner, “Chapter 1: cognition, computers, and synthetic science: building knowledge

and meaning through modeling,” Review of research in education, vol. 25, no. 1, pp. 1–35,

2000.

[3] A. C. Clark and J. V. Ernst, “STEM-Based Computational Modeling for Technology

Education.,” Journal of Technology Studies, vol. 34, no. 1, pp. 20–27, 2008.

[4] J. Gainsburg, “The mathematical modeling of structural engineers,” null, vol. 8, no. 1, pp.

3–36, Jan. 2006, doi: 10.1207/s15327833mtl0801_2.

[5] H. Fennell, J. A. Lyon, A. Madamanchi, and A. J. Magana, “Computational apprenticeship:

Cognitive apprenticeship for the digital era,” 2019.

[6] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão, “A Systematic Literature Review on

Teaching and Learning Introductory Programming in Higher Education,” IEEE

Transactions on Education, vol. 62, no. 2, pp. 77–90, 2019, doi:

10.1109/TE.2018.2864133.

[7] T. O. Odden, E. Lockwood, and M. Caballero, “Physics computational literacy: An

exploratory case study using computational essays,” Physical Review Physics Education

Research, vol. 15, Dec. 2019, doi: 10.1103/PhysRevPhysEducRes.15.020152.

[8] A. J. Magana, M. L. Falk, and M. J. Reese, “Introducing Discipline-Based Computing in

Undergraduate Engineering Education,” ACM Trans. Comput. Educ., vol. 13, no. 4, Nov.

2013, doi: 10.1145/2534971.

[9] C. Vieira, A. J. Magana, R. E. García, A. Jana, and M. Krafcik, “Integrating Computational

Science Tools into a Thermodynamics Course,” Journal of Science Education and

Technology, vol. 27, no. 4, pp. 322–333, Aug. 2018, doi: 10.1007/s10956-017-9726-9.

[10] L. S. Vygotsky and M. Cole, Mind in society: Development of higher psychological

processes. Harvard university press, 1978.

[11] N. Boblett, “Scaffolding: Defining the metaphor,” Studies in Applied Linguistics and

TESOL, vol. 12, no. 2, 2012.

[12] C. Vieira, A. J. Magana, A. Roy, and M. Falk, “Providing students with agency to self-

scaffold in a computational science and engineering course,” Journal of Computing in

Higher Education, vol. 33, pp. 328–366, 2021.

[13] P. Yantraprakorn, P. Darasawang, and P. Wiriyakarun, “Enhancing self-efficacy through

scaffolding,” Proceedings from FLLT, 2013.

[14] A. Bandura, “Self-efficacy: toward a unifying theory of behavioral change.,” Psychological

review, vol. 84, no. 2, p. 191, 1977.

[15] R. M. Klassen and E. L. Usher, “Self-efficacy in educational settings: Recent research and

emerging directions,” The decade ahead: Theoretical perspectives on motivation and

achievement, vol. 16, pp. 1–33, 2010.

[16] M. J. Scott and G. Ghinea, “Measuring enrichment: the assembly and validation of an

instrument to assess student self-beliefs in CS1,” in Proceedings of the tenth annual

conference on International computing education research, 2014, pp. 123–130.

[17] A. Cardoso, J. Leitão, and C. Teixeira, “Using the Jupyter Notebook as a Tool to Support

the Teaching and Learning Processes in Engineering Courses,” in The Challenges of the

Digital Transformation in Education, M. E. Auer and T. Tsiatsos, Eds., Cham: Springer

International Publishing, 2019, pp. 227–236.

[18] M. K. Ponton, J. H. Edmister, L. S. Ukeiley, and J. M. Seiner, “Understanding the Role of

Self-Efficacy in Engineering Education,” Journal of engineering education (Washington,

D.C.), vol. 90, no. 2, pp. 247–251, 2001.

[19] R. W. Lent, S. D. Brown, and G. Hackett, “Toward a unifying social cognitive theory of

career and academic interest, choice, and performance,” Journal of vocational behavior,

vol. 45, no. 1, pp. 79–122, 1994.

[20] R. M. Marra, K. A. Rodgers, D. Shen, and B. Bogue, “Women Engineering Students and

Self-Efficacy: A Multi-Year, Multi-Institution Study of Women Engineering Student Self-

Efficacy,” Journal of engineering education (Washington, D.C.), vol. 98, no. 1, pp. 27–38,

2009.

