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Evidence-based practice: ASEE 
 

Biomedical and Agricultural Engineering Undergraduate Students 

Programming Self-Beliefs and Changes Resulting from Computational 

Scaffolding 
 

Background: The growing demand for computing skills in all science and engineering-related 

fields begs the question of how college graduates in science and engineering can be best 

equipped with computational thinking and computer programming skills. Therefore, 

computational practices need to be integrated into the science and engineering curricula sooner 

and more often. 

 

Purpose: This study investigated undergraduate students pursuing biomedical and agricultural 

engineering majors and the changes in their self-beliefs about programming for approaching 

engineering problems. Specifically, we wanted to understand if the students' self-beliefs changed 

as a result of implementing three two-week-long computational assignments throughout the 

semester facilitated through computational scaffolding. The computational scaffolding was 

embedded within computational notebooks and was grounded in evidence-based practices 

aligned with cognitive apprenticeship methods.  

 

Methods: The study was conducted in a second-year thermodynamics course offered at a large 

Mid-Western University. The objective of the course was to understand and exploit basic 

principles of thermodynamics as they apply to biological systems and biological processes and 

model these processes using computer code. Pre and post-data were collected using a survey 

instrument at the beginning and the end of the course. The survey instrument captured students' 

perceptions toward five aspects related to their experience with programming, i.e., self-efficacy, 

self-concept, interest, anxiety, and aptitude mindset. 100 students who completed both surveys 

were considered for the final analysis. 

 

Results: Based on the constructs used to capture students' programming experience, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset, results indicate an average positive 

increase in only programming self-efficacy. The rest of the constructs maintained a neutral or 

undecided position. 

 

Implications: The study indicates that undergraduate engineering students reported a neutral or 

undecided experience during programming in the computational modeling course, specifically 

for programming self-concept, interest, anxiety, and aptitude mindset. These findings can be 

potentially useful for implementing course interventions to improve engineering students' 

experience.  

 

 

 

 

 

 

 



1. Introduction 

 

Engineering equips students with the ability to use their mathematical and scientific principles to 

build models of real-world systems and to simulate their behavior which allows them to 

understand complex phenomena, innovate around them, and even make predictions. Modeling 

and simulation then becomes a fundamental skill set across engineering disciplines. Multiple 

calls have been made for increased incorporation of modeling and simulation in science and 

engineering classrooms [1], [2]. Clark and Ernst [3] further emphasize that by having courses 

that link science and mathematics to technology through the development of both computation 

and physical models, STEM content integration can take place for students. Many times, 

however, these practices can be difficult for engineering students to learn [4] and for engineering 

faculty to teach [1]. As such, computational modeling skills and practices are often undertaught 

by instructors and underdeveloped among graduating students. 

 

Fortunately, work in engineering and physics education has started to document effective ways 

for delivering computation instruction through scaffolding, e.g., [4]–[7]. Even with these strides, 

research has indicated that incorporating computational modeling and simulation can lead to 

"cognitive overload" from having to learn and model different representations, such as physical, 

mathematical, and algorithmic, on top of the programming challenges. [8], [9]. 

 

This study investigates the effects of computational modeling and simulation, where students 

reported their levels of caring and enjoyment before and after modeling exercises. In particular, 

the pre and post-survey data capture students' perceptions of their programming self-efficacy 

beliefs, self-concept beliefs, levels of anxiety, aptitude mindset, and interest. This leads to the 

following research question: Do students' perceptions of their own computational abilities 

change after participating in computational modeling and simulation projects? 

 

2. Theoretical Framework 

 

The theoretical framework that guided the design of the learning intervention and the focus of 

our research design was grounded in the theory of the Zone of Proximal Development (ZPD). 

The ZPD was proposed by Lev Vygotsky as a sociocultural theory that describes learning and 

development [10]. The ZPD conceives learning as the space between what a learner can do 

without assistance and what the learner can do with competent assistance. A common way to 

translate implications from the ZPD to the design of learning interventions is by providing 

students with scaffolding. Scaffolding refers to all types of support and guidance offered in the 

classroom either by the instructor or peers or supported by technology [11]. 

 

In the context of higher education, scaffolding refers to teaching techniques or tools that support 

students' learning. Students are provided with learning supports that help them accomplish tasks 

that they normally would not be able to accomplish on their own or will pose a significant 

challenge. As students acquire specific knowledge and skills, those supports are eventually 

removed as they can apply the learning skills independently.  

 

In the context of engineering education practice, providing students with scaffolding is highly 

recommended when the faculty is not available to provide help (i.e. while solving a homework 



assignment or projects outside of the classroom). Specifically, in the context of computational 

assignments, scaffolding methods can involve (a) short video lectures explaining difficult 

concepts, (b) worked-out examples demonstrating and explaining difficult calculations or 

implementations of a particular function, (c) templates of code that can get students started with 

implementing their computational solutions, and (d) test cases for evaluating computational 

solutions [12]. 

 

Research studies have also explored the link between providing students scaffolding on difficult 

tasks and how those have enhanced students' self-efficacy beliefs [13]. An efficacy belief refers 

to the conviction of an individual that they can successfully execute a behavior required to 

achieve a specific goal, action, or outcome [14]. Self-efficacy beliefs are essential in the learning 

process because they result in agency, control, and intention to pursue courses of action [15].  

 

The constructs used in this study are defined as follows based on Scott and G. Ghinea’s 

instrument [16]. Self-efficacy captures “learners’ cognitive self-assessment of whether or not 

they are confident in their ability to write and debug simple programs” [p. 125]. Self-concept is 

“a composite of self-perceptions that one can be a good programmer, which is formed through 

experience with and interpretations of one’s environment” [p. 125]. Interest is “the extent to 

which an individual enjoys engaging with programming-related activities”[p. 124]. Anxiety is 

the “self-reflected state of experiencing negative emotions, such as nervousness or helplessness 

while writing and debugging programs” [p. 125]. The programming aptitude mindset represents 

“the strength of a learners’ belief in the notion of a fixed programming aptitude (e.g., aptitude is 

inherent and cannot change)” [p. 125].  

 

The implications of the theoretical framework for this study then relate to the integration of 

scaffolding approaches to support the development of computational practices and how those 

experiences may improve students' self-beliefs in their programming abilities.  

 

3. Methods 

 

This intervention study employed quantitative methods to answer the research question, which 

focused on identifying the changes in students' perceptions of their own computational abilities 

after a computational modeling activity. 

 

3.1. Context and participants 

 

The context of the study was a second-year thermodynamics course offered at a large Mid-

Western University in the USA. The objective of the course was to understand and exploit basic 

principles of thermodynamics as they apply to biological systems and biological processes and 

model these processes using computer code. Pre and post-data were collected using a survey 

instrument at the beginning and the end of the course. The survey instrument captured students' 

perceptions toward five self-beliefs related to their experience with programming, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset. 

 

The population considered for the final analysis consisted of 100 students that completed both 

surveys. According to institutional data, in 2021-2022, about 56% of the students pursuing 



biomedical engineering majors were women, and about 44% of the students were men. The 

majority of the students were White 67%, followed by Asian 21%, International 10%, more than 

two races 6%, Hispanic or Latino 3% and Black or African American 2%. The students were 

organized into a total of 24 teams, each with four or five members. 

 

3.2. Learning Design 

 

The intervention in this study aimed to facilitate the acquisition of both disciplinary knowledge 

and computational skills, consisting of three two-week-long computational projects implemented 

throughout the semester. The projects were titled; Could you outrun a Dinosaur (P1), Toxin-

Antitoxin system design (P2), and Chemical Reactor Stability and Sensitivity (P3). 

 

Computational notebooks were used to deliver scaffolding methods since they provide the 

platform to include detailed explanations, guidance, and scaffolding throughout the project 

solution. Computational notebooks are defined as computational essays that use text, along with 

code programs, interactive diagrams, and computational tools to express an idea [7]. The 

importance of computational notebooks is to provide programming environments for developing 

and sharing educational materials, combining different types of resources such as text, images, 

and code in a single document accessible through a web browser [17]. These are specific ways in 

which the projects were scaffolded to guide students: 

• The tasks for each project were broken down into smaller sub-tasks. For example, as 

shown in Table 1 below, the sub-tasks included planning, collecting data, defining 

functions, performing calculations, and visualizing results. 

• A detailed outline or a step-by-step guide was provided for each sub-task. This guide 

provided clear instructions on what the students needed to do along with examples 

such as code snippets and embedded video guides.  

• Pre-written code was provided for necessary coding sub-tasks. The code would be 

partially complete, with some placeholders or comments for students to fill in. This 

aim was to help students understand the structure of the code and provide a starting 

point of what they needed to do at each step. 

• Students were prompted to provide explanations for their visualizations to articulate 

their understanding and knowledge of the relevant sub-tasks. The aim was to 

reinforce students’ learning and improve their ability to communicate these complex 

ideas. 

• For the coding sub-tasks, students were required to add meaningful comments to their 

code. The aim was to communicate their thought process and code structures and to 

help students collaborate by ensuring that team members can easily read and follow 

the code. 

• When applicable, sample data was provided. 

The computational learning objectives for the projects were to:  

• Organize and input data efficiently 

• Visualize data by plotting arrays 

• Perform simple calculations and computations using arrays 

• Utilize linear modeling for data analysis  

• Utilize built-in tools to numerically create, solve, and visually represent ordinary 

differential equations.  



• Utilize for-loops to iterate over arrays of parameters and carry out computations. 

• Calculate steady-state values for state variables by utilizing built-in tools and 

functions. 

 

Table 1 presents specifics of the learning objectives and the high-level tasks for each of the 

projects. The projects contained planning, coding, task reflection, and assignment reflection. 

 
Table 1. Overview of learning objectives and tasks for each of the projects 

 P1. Could you outrun a 

dinosaur  

P2. Toxin-antitoxin system design  P3. Chemical reactor stability 

and sensitivity  

Objectives Collect and visualize data 

accounting for noise and 
uncertainty 

 

Compute and interpret 

dimensionless quantities 

 
Interpret and analyze data and 

resulting dimensionless 

quantities 

Describe complex biological systems using 

models of genetic circuits 
 

Characterize and describe dynamics in a 

given system of biological 

Interactions 

 
Evaluate and test possible system structures 

to achieve a stated goal 

Construct and analyze mass 

and energy balances 
 

Incorporate endo- and exothermic 

reactions into mass and energy 

balances 

 
Interpret and characterize systems 

at, and away from, steady state 

 

Predict operating conditions to 

achieve a stated goal in a 
bioreactor 

Planning Before you start - plan your 

solution 

Before you start - plan your solution  Before you start - plan your 

solution  

Task #1 Collect data. System of differential equations that 

describe the dynamics of the biological 
system  

Mass balance at steady state 

Task #2 Plot velocity as a function of 

stride length  

Predict what the dynamics of receptor, 

toxin, and antitoxin levels are over time 

 
Reflection on results from Task 2 

Energy balance at steady state 

Task #3 Plot velocity as a function of 

s/l 

Include 1 or 2 regulatory modules for 

activation of anti-toxin production 

 

Reflection on results from Task 3 

Characterizing the steady state 

behavior of the system for an 

isothermic reaction 

 
Reflection on steady-state  

analysis of isothermic reactions 

Task #4 Transform velocity to a 

dimensionless form 

Find a combination of up to 3 gene 

regulatory modules that can meet the design 

criteria 
 

Reflection on results from Task 4 

Characterizing the dynamic 

behavior of the system for an 

isothermic reaction 
 

Reflection on not in steady-state 

analysis of isothermic reactions 

Task #5 Plot dimensionless velocity  as 

a function of s/l 

 Characterizing the steady state 

behavior of the system for 
exothermic reactions 

 

Reflection on steady-state analysis 

of exothermic reactions 

Task #6 Fit a line through your data  Dynamics toward different steady 

states with a fixed value of  𝜏 

 

Reflections on dynamics and 

multiple steady state observations 

Task #7 Calculate the velocity for your 

dinosaur 

 

  

Task #8 Advise your fellow group 

members on operation dino 
egg 

  

 

Reflection 

 

Post assignment reflection 

 

Post assignment reflection 

 

Post assignment reflection 

 



 

3.3. Data Collection 

 

A pre-survey and post-survey regarding caring and enjoyment of computation were administered 

at the beginning and end of the semester, respectively. The specific survey instrument used was 

the Scott and Ghinea’s [16] instrument to assess student self-beliefs in CS1. The survey 

consisted of a 5-point Likert scale ranging from strongly disagree (1 point) to strongly agree (5 

points), capturing students' perceptions of their programming self-efficacy beliefs, self-concept 

beliefs, level of anxiety, aptitude mindset, and interest.  

 

3.4. Data Analysis 

 

The study used descriptive and inferential statistics to analyze the data in order to answer the 

research questions. The survey questions were analyzed quantitatively by deriving the difference 

between the individual pre and post-test scores for each student for each construct, i.e., self-

efficacy, self-concept, interest, anxiety, and aptitude mindset. The differences between the pre 

and post-test scores were then compared using a t-test to infer any significant differences. 100 

students that filled out both the pre-and post-course survey were considered for the analysis.  

 

4. Results 

 

The results of the analysis indicate that statistically significant differences were observed in all 

the questions under student’s reported self-efficacy, two questions under the reported self-

concept, one question under reported anxiety, and one question under reported aptitude mindset 

as shown in Table 3  below.  

 

In total 19 different tests were conducted and 9 of them were statistically significant. One 

limitation of running multiple hypothesis tests can be an increased chance of making a type I 

error. But since we primarily wanted to identify individual significant results and we did not 

have a strict requirement for maintaining an overall level of significance, we did not implement 

the Bonferroni correction.  

 

The results indicate that reported self-efficacy had the most significant changes. Two questions 

under reported self-concept i.e.  “I am just not good at programming” and “In my programming 

labs, I can solve even the most challenging problems” were significant. One question under 

reported interest i.e. “I am interested in the things I learn in programming activities” was 

significant. One question under reported anxiety i.e. “I get nervous when trying to solve 

programming bugs” was significant and one question under reported aptitude mindset i.e. “ To 

be honest, I do not think I can really change my aptitude for programming” under reported 

aptitude mindset was significant.  

 

 

 

 

 

 
 



Table 3. Pretest and Post-test transition tags for self-belief constructs  

Self-beliefs Construct      Pre                               Post              T statistic 

Mean, SD                     Mean, SD           P-value                    

Self-efficacy  I am confident that I can understand Python 

scripts 

3.11, 1.14       3.87, 0.88 6.21, <0.0001 

I am confident I can solve simple problems 

with my programs 

3.77, 0.84       4.14, 0.74 3.65, 0.0004 

I am confident I can implement a method 

from a description of a problem or algorithm 

3.36, 0.92       3.83, 0.82 4.11, <0.0001 

I am confident I can debug a program 3.38, 0.94       3.87, 0.91 4.627, <0.0001 

 

Self-concept  I am just not good at programming 2.72, 1.12        2.37, 1.00 -3.07, 0.002 

I learn programming quickly 3.36, 0.98        3.27, 1.03 -0.90, 0.368 

I have always believed that programming is 

one of my best subjects 

2.31, 1.08       2.44, 1.16 1.28, 0.201 

In my programming labs, I can solve even 

the most challenging problems 

2.49, 1.03       2.87, 1.12 2.29, 0.024 

Interest I enjoy reading about programming 

 

2.43, 1.03       2.40, 1.04 -0.225, 0.822 

I do programming because I enjoy it 2.76, 1.11        2.94, 1.17 1.59, 0.114 

 

I am interested in the things I learn in 

programming activities 

3.69, 0.77       3.38, 0.98 -2.97, 0.003 

 

I think programming is interesting 

 

3.86, 0.73       3.76, 0.89 -1.13, 0.259 

Anxiety I often worry that it will be difficult for me to 

debug my program 

3.39, 1.06      3.17, 1.12 -1.84, 0.067 

I often get tense when I have to debug a 

program 

2.98, 1.11        2.97, 1.18 0.07, 0.940 

I get nervous when trying to solve 

programming bugs 

3.04, 1.14        2.74, 1.20 -2.13, 0.035 

I feel helpless when trying to solve 

programming bugs 

2.89, 1.09      2.64, 1.07 -1.87, 0.064 

Aptitude 

mindset 

I have a fixed level of programming aptitude, 

and not much can be done to change it 

1.89, 0.72        2.05, 0.85 1.72, 0.088 

I can learn new things about programming, 

but I cannot change my basic aptitude for 

programming 

2.32, 0.92        2.42, 0.96 0.82, 0.410 

To be honest, I do not think I can really 

change my aptitude for programming 

1.86, 0.74       2.06, 0.76 2.09, 0.038 

 

 

5. Discussion and Implications 

 

This study investigated whether students' perceptions of their own computational abilities change 

after participating in computational modeling and simulation projects, which are captured as 

students' perceptions of their programming self-efficacy beliefs, self-concept beliefs, level of 

anxiety, aptitude mindset, and interest. The overall findings suggest only students' perceptions of 

their programming self-efficacy beliefs increased. For the rest of the constructs, although some 

changes were observed in specific questions within each of the constructs, they were not 

consistent. Thus, we can conclude that students’ perceptions of their self-concept, interest, 

anxiety, and aptitude mindset remained undecided or neutral after the computational modeling 

and simulation projects.  



 

The self-efficacy beliefs construct consists of the student's confidence to understand Python 

scripts, the student's confidence to solve simple program problems, the student's confidence to 

implement a method from a description of a problem or algorithm, and the student's confidence 

to debug a program. Self-efficacy can be a key factor in students' academic success and future 

career choices in engineering. Self-efficacy defined as "one's self-judgment concerning 

capability", is an important mediating factor in cognitive motivation [18]. In engineering, 

students with high levels of self-efficacy tend to have better problem-solving skills, greater 

resilience in the face of challenges, and more positive attitudes toward their coursework and 

future careers [19]. 

 

Another important aspect of self-efficacy is its relationship to the retention of women in 

engineering. Self-efficacy can play an important role in the success and persistence of women in 

engineering. Research shows a mixed view of women's engineering self-efficacy and gender 

differences for engineering self-efficacy, even though researchers tend to agree that self-efficacy 

is an important concept in academic pursuits and career decisions [20]. 

 

The implications of this study relate to the use of scaffolding methods to support students in their 

learning processes, particularly as related to computational assignments.  The findings suggest 

that the scaffolding delivered via the computational notebooks was sufficient to help students 

succeed in completing their computational projects and developed more confidence in their 

programming skills.   

 

6. Conclusion, Limitations, and Future Work 

 

This study found that participating in computational modeling and simulation projects can 

positively impact students' perceptions of self-efficacy in computational tasks. Improved 

confidence in programming during these projects can have a positive impact on students' 

attitudes toward engineering and potentially increase retention rates in the field. These are 

encouraging findings for engineering educators at all levels.  

 

However, the study has some limitations, such as having a smaller sample size and focusing only 

on perception which is only part of the larger story. As part of future work, demographic 

information can be used as a covariate for further analysis of self-efficacy given that prior 

experiences play a heavy role in student self-efficacy. Future studies could consider alternative 

methods to the ones presented here to gain a more comprehensive understanding of the impact of 

different types of computational scaffolding on students' self-beliefs in engineering. 
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