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Validity evidence for measures of statistical reasoning and statistical
self-efficacy with engineering students

1 Introduction
In this research paper, we re-evaluate structural aspects of validity for two instruments, the Current
Statistics Self-Efficacy (CSSE) scale and the Statistical Reasoning Assessment (SRA) [1, 2]. The CSSE is
a self-report measure of statistics self-efficacy while the SRA is a scored and criterion-based assessment of
statistical reasoning skills and misconceptions. Both instruments were developed by statistics education
researchers and have been consistently used to measure learning and interventions in collegiate statistics
education. Our re-evaluation is part of a broader study of the effect of using a reflection-based homework
grading system in a biomedical engineering statistics course [3, 4].

Prior to using scores from the two instruments to make claims in that broader study, it is a best practice to
evaluate the behavior of the instruments in our use case [5, 6]. To our knowledge, this is the first use of
these instruments specific to engineering students. Our justification is that the volume and level of
mathematical education engineering students receive is different from that represented in a general
population of undergraduates - as in prior uses of both instruments. Because the scores from any instrument
are a property of their context and use as opposed to a property of an instrument itself we see such ongoing
evaluation efforts as especially useful given that our population may be different [5, 7]. Substantiating that
the instruments work as expected using data from our study supports relying on the scores to make claims
about the homework intervention we are interested in. While re-validation is often included as a secondary
component of reporting on results from instrument use, we believe reporting validation efforts separately
has two benefits. First, evaluating the instrument in a separate publication supports the need for the
introduction of high-quality measurement tools for engineering education as a field by making such
evaluation more easily identifiable [5, 8]. Second, detaching evaluation of a measurement’s quality from
evaluation of a measurement’s results enables a more targeted discussion of each. The detachment also
separates information which may be of interest to different audiences (e.g., The score results are likely
more of greater interest to instructors than the re-evaluation and vice versa with researchers).

The specific purpose of this paper is to evaluate three internal structure claims for each instrument: That (1)
they fit established models of good measurement (e.g., consistent with prior research), (2) they are a
reliable measure of that construct (i.e., stable across time), and (3) they are fair and unaffected by
construct-irrelevant sources of variance (i.e., measure statistical learning; not predict gender). Other
aspects of validity (e.g., content, substantive, and external validity) are also important to a holistic
argument that our use is valid. However, in our case, those other claims are better established through
non-empirical methods such as reviews of literature on the instrument’s development, which occurred as
part of the instruments’ development, or evaluation of the measured constructs against the learning
objectives of our course. To evaluate evidence supporting our three claims for each instrument, we
organized the paper around the following research questions, with the related claim in italics:

1. How well does our data fit with prior CSSE results and characteristics of good measurement?

(a) How well do our data align with the established factor structure? (fit)
(b) How well do our data show appropriate measurement range? (reliable)
(c) To what extent do demographic variables affect fit and range with our population? (fair)

2. To what extent do our data support scoring SRA as a single construct based on correct answers?

(a) How well does that scoring method fit a theorized model of good measurement? (fit)
(b) To what extent do items provide a useful range of difficulty? (fit)
(c) To what extent do person characteristics indicate reliability of score separation? (reliable)
(d) To what extent do demographic variables affect fit and score in our data? (fair)



2 Methods
2.1 Instruments
The Current Statistics Self-Efficacy (CSSE) scale [1] builds on established studies of students general
mathematics self-efficacy to create a measure of “confidence in one’s abilities to solve specific tasks related
to statistics” [1]. The CSSE contains 14 self-report items with a one-sided, six-point (no confidence at all
to complete confidence) Likert-like scale. The original developers established that the CSSE has a reliable
uni-dimensional structure and is stable over time. They also showed that CSSE scores have a positive
correlation with increasing statistics education, correlate with course performance, and have a significant
and well scaled relationship with generalized mathematics self-efficacy. Later uses of CSSE consistently
show similar results and good correlation with similar instruments [9, 10]. In all prior work, CSSE scores
have been calculated as the sum of all responses to all items. Confirming that this approach is credible with
our population is our primary goal.

The Statistical Reasoning Assessment (SRA) [2] is a multiple choice test contains 20 items. Each item
contains four to six responses items representing three types - correct, incorrect, and answers reflecting
known statistical misconceptions [2]. We also added a confidence rating item to each multiple-choice item,
although those are not analyzed here [11]. The use of misconception response options is similar to concept
inventories, an increasingly common form of assessment in engineering education [12]. The SRA was
created to addresses two challenges in existing assessment methods. First, separating statistical reasoning,
especially related to realistic data, from general mathematical reasoning or ability to perform computations.
Second,including identified misconceptions about statistical concepts as part of measuring that
understanding and reasoning [2, 13, 14, 15]. As with the CSSE, the SRA has seen continued use (e.g.,
[16]). The original developer’s work establishes that the SRA is a “valid and reliable instrument” with
good test-retest reliability and aligning with existing measures of math related reasoning in a cross-cultural
study [2]. However, the developers note that mathematical measures of fit were relatively low, which is of
key relevance to our study. The developers attribute low fit measures to misconceptions often being stable
across education, and because each item measures a potentially distinct concept/misconception, which may
be not coalesce into a generalized performance trait. Confirming the presence or absence of those behaviors
in our SRA data is our primary goal because they affect how we calculate and use the scores.

2.2 Study Context and Data Collection
As noted, the data for this study is part of a broader, IRB approved, study of homework design in an
undergraduate engineering statistics course during the Spring 2022 semester. The study occurred at a large,
public, R1 University in the Southern United States. The university is generally considered very selective
with an acceptance rate of around 20% and an average composite SAT score of 1465. The study occurred
in the university’s Biomedical Engineering Department (BME) - which is representative of the university in
all aspects except gender balance (54% female in BME as opposed to 60% male overall). The
undergraduate statistics course is a BME degree requirement, typically taken in the sophomore year, and
was taught as 2 sections. The course was intended to be taught in person, but moved to an online format for
the majority of the semester due to a household accident the instructor suffered during the second week of
classes. The course content is generally similar to other undergraduate engineering statistics course
excepting a focus on biomedical data and applications.

Data from the instruments were collected using a pre-post design using an electronic survey whose
responses were combined with course exam grades after the semester’s completion. All students were
asked to complete a pre-survey (101 responses, 123 students, 82% participation) during the first week of
the course and a post-survey (104 responses, 116 students, 90% participation) distributed in the final
instructional week of the semester. The pre-survey contained a consent form, the CSSE, the SRA, and a set
of demographics questions. The post-survey contained all of the pre-survey components except



demographics questions, including a re-consent. Students who completed both surveys had their lowest
homework grade dropped whether or not they consented to the use of their data in the research study.
Given the reward for participation, we engaged in a data cleaning process to remove low effort or
incomplete responses (e.g., blank, or all the same answer) as well as responses that provided data but
declined to consent to research participation [17]. Our final data set contains 196 SRA responses (99 pre
and 97 post) and 183 CSSE responses (85 pre, 98 post). Because appropriate samples sizes are specific to
the analyses we perform, we discuss sufficiency throughout the remainder of the paper.

2.3 Analytic Methods
We used two analytical techniques - confirmatory factor analysis (CFA, a form of factor analysis) and
Rasch analysis (Rasch, a form of item response theory). In-depth descriptions and prior examples of these
techniques in engineering education can be found in literature for CFA and for Rasch [18, 19]. In this
section we focus on our implementation of each method and the criteria we applied to interpret the results.
All analysis was performed using R Statistical Software (v4.2.0) [20]. We primarily used the Lavaan
package (v0.6.12) [21] for CFA analysis and the eRm package (v1.0-2) [22] for Rasch analysis alongside
related data preparation and data visualization packages.

2.3.1 Confirmatory Factor Analysis
We used CFA to evaluate Research Question 1 (RQ1), which focused on the CSSE instrument, and
generally report results using guidelines for reporting factor analysis work [23], [24]. CFA enabled us to
evaluate the overall fit of our data (RQ 1a and 1b) against the latent structure established in prior research
[1] as well as whether that latent structure was invariant between groups (RQ 1b and 1c). Evaluating group
invariance is a tool in identifying sources of construct-irrelevant variance that affect the interpretation of
results or need for normalization of scores across groups.

Following suggestions in Byrne [25] and Hancock [23] we report the following measures of overall fit: Chi
square test against a null model (chi-square), Root Mean Square Error of Approximation (RMSEA),
Comparative Fit Index (CFI), Tucker-Lewis Index (TLI, also known as non-normed fit index), and
Bayesian Information Criterion (BIC). We interpret those measures using the criteria for ‘good’
measurement listed in Table 2. We also evaluated item loading (i.e., covariance of individual items against
the latent construct) to ensure that items individually contribute to the latent construct of interest. While
many guidelines are available, we adopt <.60 as a minimum for concern about item function and values
>.90 as a criteria for concerns about item redundancy, which can warp scores. Those criteria are motivated
by sample sizes in subgroups of interest - specifically the sample size of our pre tests was 85, a sample size
at which 0.60 is a practical minimum criteria [26].

We used invariance analysis to test whether CSSE scores were consistent across groups we have reason to
expect might have differences in statistical self-efficacy. Often referred to as ‘fairness’, establishing
invariance is important to establishing whether we should correct for secondary variables (e.g., gender)
when using CSSE scores in our broader study [6, 18, 27]. We evaluated invariance for three binaric groups.
First, gender identity1 because earlier research suggests lower mathematics self-efficacy in female
identifying students [28, 29]. Second, pre and post responses based on the expectation that self-efficacy
will likely change across a semester of instruction statistics. Invariance testing allows us to confirm that
changes are limited to changes in item score, not changes in the underlying scoring structure. Confirming
expected changes in mean scores exists while the underlying scoring model does not adds credibility to
claims about changes in self-efficacy across the semester. Third, we compared those with and without prior

1The pre-survey provided multiple gender identity options using a select all that apply question format. All participants re-
sponses included either a male or female selection although some selected further options (e.g., cis, trans). Therefore the invariance
test compares male- and female-identifying student groups



statistics coursework. For similar reasons to the pre and post groups, we hypothesize that prior statistics
education may be a source of differences and decided to confirm the consistency of the scoring model for
both groups. That confirmation, again, allows us to correct for prior statistics education in the broader
study if necessary.

For each group comparison, we follow typical invariance testing procedures and applied a series of
incremental constraints to the base CFA model [6, 27]. We compared three models for each group: (1)
Configural - which only constrains the two groups to the same structure, (2) Weak - adding a constraint for
equal factor loading between groups, and (3) Strong - adding a constraint for equal ‘item intercepts’ (i.e.,
both groups have the same mean score on each item). For each group comparison, we report the fit of
models 1 vs. 2 and 2 vs. 3 as separate nested chi-square tests and also report BIC values [25].

2.3.2 Rasch analysis
To evaluate the SRA instrument, we analyzed the correct answers to SRA items only2 using Rasch. The
Rasch model, which Rasch analysis is built on, is a special case of item response theory (IRT) that fits a test
(i.e., all items in an instrument) to a presupposed model of ‘good measurement’ in a way similar to CFA
fitting to a presupposed model of a latent construct [11, 18, 30]. While typical approaches to IRT provide
only a separate descriptive model for each item, Rasch provides measures test level score function and
measures the fit of the test to a known model of good measurement. Our analysis consisted of two parts.
First, we preformed an overall analysis (RQ 2a, 2b, and 2c), similar to analyzing fit in CFA. Second, we
performed a differential function analysis that evaluates whether individual items or the SRA test as a
whole perform similarly with different groups (RQ 2d), which is similar to the CFA invariance analysis. As
with the CFA analysis, we based our work on established guidelines for performing and reporting the
Rasch analysis work [11, 23, 30].

The overall analysis evaluates how well our SRA instrument data fit the Rasch models’ ideal model of
good measurement. The model of good measurement is unidimensional, accurate across the range of
abilities present in a population, and can accurately differentiate between varying ability levels. Testing the
fit of our SRA data against the Rasch model of good measurement establishes the instruments’ ability to
provide credible scores of statistical reasoning. From the Rasch model we report two fit statistics (infit and
outfit), a person-separation reliability metric, a difficulty value for each item, and ability scores for our
participants. Infit values assess fit near the average score, while outfit values assess fit at score extremes.
Higher infit and outfir values indicate more randomness than is useful and lower fit values less. Criteria for
productive measurement of mean square fit values varies but we adopt a 0.70-1.30 range suggested for high
quality or high stakes testing [30]. Person-separation reliability is a singular value the represents the overall
ability of the instrument to provide score estimates that are due to test performance rather than
measurement error - with .50 suggested as a minimum and .70 as a target, but with consistent warnings to
not treat the value as the sole measure of test performance. Results for item difficulty and person ability
reflect log odds (in logits) that an item will be answered correctly and the ability of an individual
respectively with the average difficulty and average ability constrained to zero for both [30].

The differential function analysis analyzed the same groups as the CFA invariance analysis (i.e., gender,
prior statistics coursework, and pre-post test) at both the item and test level [31]. Similar to CSSE, we
expect to find no differences based on gender and better performance (seen as an increase in person ability
or decrease in item difficulty) in post tests or those with prior statistical experience. As with invariance

2Personal communication and review of prior work noted that minimal testing of a generalized scoring model for SRA using
modern tools was conducted during the instrument’s development. Further, as noted in the SRA development article [2], the nature
of misconceptions may make them poor candidates for the application of a generalized measurement model, which we can confirm
through this testing



analysis, these are important properties to confirm to guide our interpretation of results in our broader
study. We evaluated differential item function by comparing the difficulty of each item for both groups
using two criteria: A z-test provides a probability of a statistically significant difference in difficulty and a
scatterplot of item probabilities with a 95% confidence interval bounds provides a visualization of how
item difficulty compares between two groups. To evaluate differential test function, we perform a t-test
with person ability as the dependent variable and our group comparison variable as dependent variables.
Each of our three grouping variables was assessed independently.

3 Results
3.1 CSSE instrument
3.1.1 Preliminary analysis
We initially evaluated that individual item behaviors show that our data behaves as expected and is
reasonable to use in CFA analysis. The results are also similar to other studies using CSSE. Item means
ranged from 3.02 (CSSE.6) to 4.22 (CSSE.14) - no items have means in the lowest or highest category of
the response scale. Inter-item correlations ranged from 0.41 to 0.78 and are all significantly positively
correlated, as shown in Figure 1. Because CSSE is a single factor instrument, the significant same direction
correlations suggest that each item can contribute to score calculation. In parallel, the lack of very large
item-item correlations (i.e., >.90) suggest that items are probably not redundant. Measures of reliability
were also positive for continuing with CFA analysis. The coefficient alpha for all items was high (0.96),
which suggest our data contain only one factor. Additionally, a removed-item test did not show any items
whose inclusion reduced the reliability of the instrument.

Figure 1: Plot of item-item correlations color scaled from -1 to 1 with significance demarcated using aster-
isks (* = p < .05,** = p < .01,*** = p < .001).

3.1.2 Overall model fit
We evaluated two versions of the CFA model to fully understand the latent structure of our data. Both used
the single latent construct that was proposed by the CSSE developers and supported by our preliminary
analysis. The first (primary) version treated individual item responses as linear, which we also compared
against a (second) version treating item responses as ordered. The ordered model relaxes the assumptions



of normality and equi-interval response scale behavior to evaluate the impact of assuming that the
Likert-like response scale behaves linearly.

The results (Table 1) show that both models of our data have an acceptable degree of fit with the published
structure of the CSSE instrument. For the linear model, the measures of fit were at or just below criteria for
acceptable fit stated in Table 2. TLI and chi square values meet the acceptable thresholds. However, both
CFI and RMSEA are both just outside the acceptable criteria. Item loadings ranged from 0.64 to 0.87 with
an average of 0.80. In total, all items meet our minimum threshold (>.60) while none suggest concerns
about item redundancy (<.90).

Table 1: Overall fit results for CFA model of the CSSE instrument
Factors Variables χ2/df CFI TLI RMSEA (90% CI) BIC

1 Linear 2.65 0.943 0.932 0.095 (.079-.111) 7577.530
1 Ordered 2.59 0.987 0.985 0.094 (.078-.110) N/A

Notes: Both models fitted using maximum likelihood estimation. Ordered model reports
robust variant which scales fit statistics and standard errors.

Table 2: Summary of CFA Fit statistics, evaluation criteria, and interpretation notes used in this study
Fit Measure Type Good Fit Acceptable Fit Notes
Chi-square Absolute χ2/df < 2 χ2/df < 3 higher indicates better fit
RMSEA Absolute < 0.05 < 0.08 lower indicates better fit
CFI Comparative > 0.97 > 0.95 higher indicates better fit, some sug-

gest 0.90 and 0.95 as criteria
TLI Comparative > 0.95 > 0.90 higher indicates better fit
BIC Parsimony Lowest value is preferred change of >10 is a common guide-

line for strong evidence of improved
parsimony

Notes: Criteria for interpretation of fit statistics drawn from [24]. Criteria, especially TLI and CFI,
must be interpreted with caution when evaluating models that treat variables as ordered not linear.
Such models tend to inflate fit measures because of an increase in the number of fitted parameters [32].

The results also show that ordered version of the model has somewhat better overall fit. This is a typical and
mathematically logical finding. Likert-like scales are ordered categorical despite frequently being treated
as linear. However, more fundamentally, fitting an ordered model also simply increases the number of
parameters that are fitted, which is why ordered models have a high potential for overfitting data [32]. Both
the chi-square and RMSEA fit measures are effectively the same for the ordered model. However, the CFI
and TLI both increase enough to meet the criteria for good fit. Interestingly, this specific result is identified
in CFA literature [32]. The most common algorithms for parameter estimation (i.e., model fitting) tend to
result in inflated CFI and TLI values with ordered data. While typically considered overoptimistic in CFA
analysis, chi square fit indices have been shown to be relatively less optimistic about fit when used with
ordered data. Item loadings for the ordered model range from 0.67 to 0.89 with an average of 0.83.

3.1.3 Measurement invariance
The measurement invariance results showed evidence of sources of misfit in the CSSE data that our aligns
with soem of our expected differences in fit. Specifically, we saw violations of invariance when comparing
both pre and post tests as well as those with and without prior statistics experience. In parallel, while others



have seen gender differences in mathematics self-efficacy, our results did not support those within our
sample. Summary results of the invariance testing appear in Table 3.

Table 3: CFA invariance results for comparison of CSSE data by gender, pre-post, and prior statistics groups
Gender Pre/Post Previous

Constraint χ2/df BIC p χ2/df BIC p χ2/df BIC p

Configural 2.1 7980 N/A 2.2 7605 N/A 2.1 7063 N/A
Weak 2.0 7870 2.1 7548 2.0 7008
Strong 1.9 7770 2.4 7571 *** 2.0 6972 **

Note: p reports significance of a nested chi squre difference test (* = p<.05, ** =
p<.01, *** = p<.001) for pairs of models with increasingly strict constraint within
that group comparison. Levels of constraint are further explained in methods section.

Our results show no evidence of gender differences in self-efficacy. Constraining factor loadings (weak)
does not change the fit compared to just constraining the structure (configural). Nor does constraining the
item means (strong) significantly change the fit. Further, the most constrained model is also the most
parsimonious as indicated by the BIC results, suggesting that the additional parameters fitted in less
constrained models do not add value (i.e., unique information) to the model.

Rather than no differences between the pre and post responses, our comparison shows expected evidence of
difference. For the pre and post comparison the evidence that CSSE is not invariant is not only expected,
the specific types of invariance are important to our evaluation. The results in Table 3 show that
constraining factor loading did not significantly change the fit, suggesting the same scoring model is valid
for both pre and post tests. However, the results show that constraining the item means (strong) to be the
same on the pre and post tests does significantly change the fit. Evidence of that importance of that effect is
reinforced via the BIC values for the models. The weak model is a more parsimonious explanation of our
data, despite fitting extra parameters (i.e., two intercepts for each item as opposed to only one). This
suggests, as we expected, that while there is a difference in pre-post mean self-efficacy the underlying
model for calculating those scores is consistent.

Similarly, we find expected evidence types of invariance when comparing students with prior statistical
preparation to those without. Like the pre/post invariance tests, we see that constraining factor loading does
not change the fit compared. Similarly, constraining item means shows a significant change in chi square
model fit. However, the notable difference is that, the most constrained model is the most parsimonious
suggesting that the effect of prior stats is less meaningful on self-efficacy scores.

3.2 SRA Instrument
3.2.1 Overall model fit
The results of the SRA show that the items reasonably fit the Rasch analysis model of good measurement
overall. While participant scores are somewhat concentrated at the high end of test, which we expect to see
when including pre and post tests, the items show good fit and reasonable score separation. The primary
results appear in Table 4.



Table 4: Item difficulty and fit values for all SRA items
Item information Mean square fit

Number Difficulty Infit Outfit

SRA.1 -0.78 0.92 1.06
SRA.2 -2.10 0.83 0.67
SRA.3 -0.19 1.01 1.01
SRA.4 -0.42 1.10 1.30
SRA.5a -0.72 1.02 0.96
SRA.5b 0.06 0.82 0.78
SRA.8 -1.84 0.77 0.61
SRA.9 -1.84 0.84 0.71

SRA.10.1 -0.05 1.01 1.00
SRA.10.2 0.13 0.97 0.96
SRA.11 -0.94 0.91 0.97
SRA.12 -0.44 1.03 1.02
SRA.13 1.47 1.1 1.33
SRA.14 0.35 1.01 1.02
SRA.15 2.49 1.12 1.62
SRA.16 0.28 0.98 0.96
SRA.17 0.02 0.95 0.91
SRA.18 1.62 0.97 1.39
SRA.19 1.66 0.9 0.93
SRA.20 1.24 1.00 1.07

avg. 0 0.96 1.01
max 2.49 1.12 1.62
min -2.1 0.77 0.61

Notes: Values rounded to two decimal places. Fit
values outside of .70 to 1.30 criteria for good fit
bolded. Average item difficulty is fixed to zero in
model specification. Fit values are scaled to 1.



Figure 2: Comparison of item difficulties and individual scores alignment from all responses to SRA instrument. Item difficulties located and jittered
on Y axis to increase interpret-ability only - item difficulty has no Y value



All 21 items had mean square infit values within the range suggested for high quality measurement -
ranging from 0.77 to 1.12 against an acceptable range of 0.70 to 1.30 (avg. 0.96). Further, 16 of 21 items
(min 0.61, max 1.62, avg. 1.01) also had acceptable outfit values as well. Figure 3 presents the information
in Table 4 visually to highlight the relationship of fit and difficulty, as well as the overall alignment of infit
and outfit values for each item.

Figure 3: Comparison of mean square infit and outfit values against item difficulty for all SRA items

Of the five items outside the acceptable range, two items were below and three items above our criteria.
The two low outfit items are also the two easiest items for our participants. Low outfit values do not show
that items are poor measures of the construct. Instead, low outfit values indicate that they do not add
information to estimate participant’s ability score because there is little randomness in the outcome for
particularly high or low scores - likely because almost all students get those answers correct.

The high outfit items were three of the four hardest items on the test. Two of the three high outfit (items 13
and 18) also cover concepts that not emphasized in the course used in our study (i.e., abstract probability
and combinatorial reasoning respectively). Those items were retained as reference points to compare
organic learning against specific course learning objective achievement. The third (item 15), with high
outfit was the hardest on the SRA for our participants and involves a visual interpretation of a graph. We
hypothesize some element of subjectivity in answers may be a cause here. However, all three high outfit
items have reasonable infit values, suggesting they predict the majority of the sample well. Overall, the fit
values show acceptable fit of our SRA data to the Rasch measurement model, although a few items that
may be slightly too hard or too easy for our population.



While fit may be acceptable, the results suggest concern about score estimation and score separation using
the SRA with our population. Again, baseline results are acceptable, but nuances of the SRA behavior
appear less so. Item difficulty ranged from -2.10 to 2.49 logits, a range of 4.7 logits. The person separation
reliability for our SRA was 0.61, below the suggested criteria of .7 but not low enough to suggest concern
on its own. The average gap in difficulty between adjacent items, which is useful to understand how well
covered the difficulty range is, was 0.24 logits.

However, there were five item pairs that have difficulties less than 0.05 logits apart. The poorly separated
items were all below the average ability (i.e., 0 logits) of our sample. Items 8 and 9 both have a difficulty of
-1.84 logits, which suggests they serve little independent value in determining score. Figure 2 shows a
item-person comparison highlighting the alignment of the participant scores with the items. Three items (2,
8, and 9) have difficulties below the lowest ability score of any participant. In contrast, 4 tests have ability
levels above the highest item. While concerning, we note that 3 of 4 tests above that measurement ceiling
come from post tests. The only pre test above the measurement ceiling was from a participant whose post
test was also above the ceiling. These results suggest the test may not be appropriately difficult.

3.2.2 Differential Function
To evaluate differential test function, we looked at the same three demographic variables as with the
invariance analysis of the CSSE instrument. The results of the differential test function analysis in Table 5.
The differential item function results appear in Figures 5 and 4. The results provide suggest some caution
in scoring the SRA as a single instrument with these groups. Specifics for each of the three comparisons
are discussed below.

Table 5: Evaluation of SRA differential test function by comparing mean scores of 3 subgroups of interest
Comparison Group Means (logits) Test for mean score difference

Variable Reference Ref. Comparison t df p

Gender Female -.37 .15 -.02 81
Prior Stats No prior stats .16 .29 -1.05 194
Pre-Post Pre .35 .11 -1.9451 194 *

Note: All tests are independent two-sample t-tests. Based on our hypotheses, the gender
comparison is two sided whereas the other two tests are single sided. * = p<.05, ** =
p<.01, *** = p<.001

The comparison of scores by gender identified 2 items as having different difficulties between groups, but
no evidence of different test function. Items 8 (p=.02) and 14 (p <.001) both had significantly different
difficulties, although only item 14 fell outside the 95% confidence bands shown in Figure 4. Item 8
involves probabilities as ratios and was contextualized in gambling while item 14 involved sample
variability in the context of gender and births. When looking at the whole test, there was no significant
difference in mean test score (p=.97, two tailed) and the overall distributions (Figure 5) were generally
similar between male and female identifying participants - although female participants were more likely to
have scores at the upper or lower end of the distribution.



Figure 4: SRA invariance plots by group. Left column is scatter plots of item difficulties for one group on
the x and the other on the y. Blue line is a y=x reference for perfect invariance. Red dotted lines are 95%
confidence interval of no difference. Right column shows item by item difficulty shift in the direction of
easier group. Dark blue bars show a >.50 logit difficulty shift - a rough criteria that is noted as potentially
overly conservative [11]. Top to bottom group comparisons are prior stats, gender , and pre vs. post test



Figure 5: Comparison of Rasch estimated person score distribution by group to evaluate differential test function. Left to right gender, prior stats,
pre-post group comparisons



The comparison of participants with and without prior statistics experience also show minimal evidence of
differential item and test function - although the specific results were more surprising. Only item 20, which
invokes rolled dice as a way to ask about combinatorial reasoning, shows differential item function. The
difference is both significant (p=.02) and outside of the 95% confidence band in 4. However, that item is
significantly easier for students without prior statistics experience, which is the opposite of what we would
expect, unless the underlying reason for an incorrect answer is a misconception developed in prior statistics
education. For the test overall, there is not a significant difference (p=.15) in mean scores between those
with and without statistics experience - although the no prior experience group appears shifted towards
lower scores. This result is different from what we expected, and from the results found for CSSE.

Finally, we compared the pre and post tests, expecting to see items become easier and scores becoming
higher for post test students. We found three items were significantly easier on the post test. Item 1 (p=.04)
is about selecting an appropriate average. Item 13 (p=.02, outside the 95% bounds) is about using
combinatorial reasoning. Item 14 (p=.03) is about sample variability. At the overall test level, we tested for
a significant increase in scores on the post test and found non (p=.97). In fact, the mean pre test scores
(0.35 logits) where above the post test scores (0.11). We return to this point in the discussion.

4 Discussion and Conclusion
We use this section to summarize and further interpret our findings as they relate to how we can, and
cannot, use the CSSE and SRA scores in our broader study. We separate those discussions into sections by
instrument, and end by commenting on the implications for engineering education. To reiterate our
standpoint on instrument validity, our results are specific to how the instruments function in our study.
What limited information our results provide about each instrument overall is anchored in the context of
prior uses, developers’ intent, and prior developers’ evaluative efforts - a point we address in each
section.

4.1 Summarizing our use of CSSE
Our results support adopting the original scoring method (single factor, all item responses summed) to
calculate a statistics self-efficacy score, as opposed to defining a new model or rejecting the model based
on slightly lower fit. While higher fit values would be considered optimal, our use case involves evaluating
a new pedagogy with an existing instrument. That use is low stakes and involves ongoing as opposed to
new validation work. Both points that suggest that lower fit values may be acceptable [5]. Further, prior
results and our secondary analyses provide credible explanations for sources and types of misfit. We see
the logical explanations for reduced fit, more than fit values themselves, key evidence supporting our use of
CSSE scores as credible.

In comparison to the original development work, we analyzed a similar sample size (183 vs. 140) and
similar pre-post test design [1]. Our results similarly supported a single factor model (alphacurrent = .96
vs. alphaoriginal = .975). Further, while the original developers performed exploratory as opposed
confirmatory factor analysis, item loading’s were also very similar (0.640 to 0.868 vs. 0.56 to 0.81). These
results suggest that, at minimum, our data behaves very similarly to the developers’ original study. Given
that CSSE has seen ongoing use, the similarity is useful for contextualizing the results. Two additional
properties not tested in the original work support the scoring method. First, we saw no evidence of ceiling
or floor effects in item or score distributions. Second, we see the lack of change in fit from treating
responses as ordered as support. The scoring method, sum all items, presumes equi-interval data, and we
saw no improvement in fit by relaxing that assumption.

While the original developers did not test invariance, they did report other analyses we can compare to [1].
The developers found a significant increase in self-efficacy between the pre and post test. That aligns with



our result showing differences in item means between pre and the post responses. They evaluated the factor
structure of the pre and the post tests separately using exploratory factor analysis. They found similar item
loading, minimal change in variance explained (5%, not tested for significance), and similar support for a
single factor structure. These results, similarly, align with our results that constraining pre and post
responses to an equivalent scoring model did not change fit. For our broader study, demonstrating that the
measurement model is the same between the pre and post test is important to evaluating change in
self-efficacy across the semester. We expect construct-relevant variance when comparing pre and post
semester scores, but need that variance to be limited to scores themselves and not the scoring model. In
parallel, the results suggest we do not need to correct for a general gendered effect on self-efficacy, which
prior work suggests as a construct-irrelevant source of variance[28]. These results also highlight the effect
of fitting a single CFA model to a sample with two discrete populations (pre and post tests in our case) can
negatively impact fit because of assumption of item normality that is inherent in CFA.

4.2 Summarizing our use of SRA
The results for the SRA show more caution in adopting the scoring model we evaluated in this paper. Our
method of scoring made two simplifications to the SRA: (1) Treating items as correct or incorrect and (2)
treating all items as measures of a single correct statistical reasoning construct. Those simplifications are
different from the model proposed by the developers, who subdivided general statistical reasoning into 8
component skills, and scored for misconceptions as a specific type of incorrect answer. The authors
specifically note that instruments which use specific misconceptions as a wrong answer choice often
behave differently than traditional dichotomous scored items with a single correct, and set of generally
incorrect answer choices. They link that behavior to the nature of misconceptions, especially their tendency
to be stable over time. While overall the Rasch Model of good measurement fits our SRA data well, aspects
of item difficulty, score distribution and differential function suggest that does not function well as a
scoring method. The results have motivated us to pursue a different scoring approach.

Using our single construct scoring approach, measures of fit were acceptable. Infit values all met accepted
criteria, suggesting typical scores are defensible. Further, excepting the most difficult items, the outfit
results show that a broad range of scores are also predictable. As noted in the results, the person separation
index was below accepted thresholds. That measure estimates whether the distribution of item difficulty in
the overall instrument is sensitive enough to differentiate between people of different abilities [33].
However, in cases where other indications of model fit and function are positive, that measure alone is not a
reason to reject a scoring model.

However, the difficulty of the items limits the interpretative value of those predictable scores. The results
show several cases of items with near equivalent difficulty. While those items focus on different component
skills, our intended approach focuses on one score of an overall construct. In those cases, multiple near
equivalent items mean that a simple approach to score calculation (i.e., summing the raw number of correct
answers) will likely warp scores. While that problem can be solved by using the participant ability levels
calculated by the Rasch model, doing so has other problems. Three items had difficulties below the lowest
scoring participant - meaning they add no value to estimating ability levels. Similarly, the grouping of item
difficulties means large areas of the ability spectrum have little coverage, meaning scores in them are less
accurate. The cumulative effect is visible in Figure 2 and explains the low separation reliability. For scores
below the mean of our population, 12 items contribute to score calculation and separation. In contrast, for
abilities above the mean, only 4 items can separate between different scores, with items 18 and 19 doing so
redundantly. Again, these results speak to our scoring method not necessarily speak to the SRA itself. We
saw further reasons for concern in the differential function test, which we believe reflects the nature of
misconceptions the SRA developers noted. Primarily, we were surprised by the results showing gendered
item function and no meaningful difference in ability levels between pre and post responses. We have no



basis for expecting a difference in female and male performance on specific items, however the results
show two items with such a difference. Most interestingly, the difference occurred specifically on the
easiest item (item 8), which was easier for female students, and the hardest item (item 14), which was
easier for male students. We have no explanation for this, only a hypothesis that different test taking
behaviors may contribute. For the pre and post comparison, we expected to see the test and items become
easier in the post responses. Three of twenty items did exactly that. However, the significance threshold in
differential item testing is only one aspect and is limited to identifying specific items of concern. When
looking at all item difficulties, items were approximately equally likely to be harder on the pre test or the
post test. That effect is apparent in the differential test function analysis with pre test ability scores higher
than post test. We hypothesize two potential causes - the first is the potential for low effort responses,
which we had attempted to address through data cleaning as noted in the methods. The second is the
presence of specific misconceptions the developers warn about - which may have been created, reinforced,
or retained, through the course. Overall, our results do not support either of our scoring simplifications. As
described in the methods section, the development of SRA did not involve partial credit modeling or
modern scale-level analysis [2]. The developers focused on identifying the presence of a broad set of
correct reasoning skills and related misconceptions, rather than a singular score [Personal Communication,
2022]. Our results suggest that both the broad range of skills, and modeling of misconceptions as different
from general incorrect answers have value to interpreting SRA scores. In future work, we plan to use
regression techniques to introduce both of those considerations to evaluate the SRA data as part of our
broader study.

4.3 Implications for engineering educators
For the field, we see two primary findings useful to other scholars. First, is that these instruments do
behave in rational ways and are likely useful for understanding engineering students’ statistical learning.
The CSSE, specifically, works well with engineering students and is a useful tool to evaluate a specific sub
area of self-efficacy. Given the significant math focus of many engineering programs, an instrument that
separates out statistics self-efficacy from general mathematics self-efficacy may be useful. The SRA results
do not support our approach to generating a single score, but do show strong evidence that the individual
items behave as expected and that the instrument has generally valid behavior for capturing data about
engineering students’ statistical reasoning. In those ways, these instruments are a useful contribution to the
body of measurement tools within engineering education that have data supporting their use specifically
with our student population.

The results also highlight the ways in which tools like CFA and IRT can be extended to draw deep insights
about instruments. Such insights about an instrument are fundamental to appropriately interpreting and
relying on the scores that they provide for a specific purpose [5]. While testing the fit of a theorized factor
structure is on its own important, invariance analysis can provide additional information about instruments’
validity. For the CSSE instrument - invariance analysis explicitly demonstrated that the latent model of the
instrument was consistent across our pre and post test. Without showing that, results that treat the model as
the same would be less credible. Similarly, the Rasch model itself, as opposed to classical test theory or
IRT, provided a way to test the validity and reliability of simplifications to the instrument’s proposed
scoring system. Then, differential function analyses also provided information about how the scores and
their meaning changed. More than the Rasch model results, that comparison across groups demonstrated
that our proposed scoring model was not defensible and gave strong indications as to why. Whether CFA or
Rasch models, information gleaned from invariance and differential function analysies are important. The
results can establish, or challenge, assumptions that scores mean the same thing across time or subgroups
as well as that scores change in expected ways. While meaning is often assumed to be static in many types
of measurements that engineers perform in technical work, for educational instruments that assumption



should be, and can be, validated. Both are critical to supporting studies, like ours, about the impact of a
novel educational intervention.
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