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Uncovering Student Social Networks: Entity Resolution Methods 
for Ambiguous Interaction Data 

 
Introduction 

 
Over the last century, cognitive psychologists have proposed that social interactions are a 

key component of student learning [1]–[4]. For example, Albert Bandura’s Social Learning 
Theory [5] posits that students are influenced by their observation of models (e.g., peers, parents, 
etc.). Beyond learning, researchers have identified that students’ retention rates are positively 
correlated to their access to individuals who can provide affective, financial, or informational 
support, especially in traditionally underrepresented groups [6]. Within these or similar 
theoretical foundations, engineering educators have identified several specific ways social 
interactions positively influence academic outcomes [7]–[12].  

 
Among the methods for studying student interactions, Social Network Analysis (SNA) is 

uniquely suited to quantitatively explore relationships between social interactions and student 
learning. To conduct an SNA study, researchers use name generator surveys to prompt egos 
(individual study participants) to identify alters (individuals the ego interacts with). After 
collecting information about interactions, researchers represent interactions in an adjacency 
matrix by placing weighted values at the intersection between an individual’s assigned row index 
and the alter’s assigned column index. Using adjacency matrices, engineering education 
researchers can visually and quantitatively analyze student social networks and compare the 
students’ network traits to desired outcomes. 
 

However, the resources necessary to develop accurate, large-scale adjacency matrices 
may be limiting the scope of current SNA studies. One contributing factor to the high resource 
cost of large-scale SNA studies is the problem of reference ambiguity – references to an entity (a 
real-world individual) varying from the entity’s identity (the real-world individual’s correct 
name). Eliminating reference ambiguity is traditionally completed through entity resolution (ER) 
[13]. However, we are not aware of any studies in engineering education which have applied ER 
to raw interaction data. Rather, our literature searches show prior studies avoid reference 
ambiguity by focusing on simplified social environments, like single classrooms or online 
domains, where researchers can consistently collect accurate interaction data [14]–[16]. 
 

While these small-scale studies provide valuable insights on engineering students’ 
networks, they neglect a significant portion of students’ interactions [17], [18]. To analyze more 
holistic student networks, our research group is completing a large (i.e., 1000+ students), open-
response network study of all first- and second-year undergraduate engineering students at a 
large, public land grant university in the U.S. (details in [19]). While completing this study, we 
realized that manually resolving students’ ambiguous references to their correct entities was a 
significant challenge [20]. Further, we found that openly available ER resources often required 
training data and/or prior data-filtering [21], [22]. To this end, this paper is intended to describe 
and make available our efforts to filter and resolve raw interaction data using an automated ER 
module: EntityRAID (Entity Resolution for Ambiguous Interaction Data).  
 
 



  

Background 
 

Existing SNA research indicates there are several relationships between students' 
interactions and learning outcomes. For example, Grunspan and colleagues [23] performed a 
semester-long SNA study on 187 university students to identify that network centrality (how 
connected a student is to others) was significantly related to the exam scores in a university 
course. Further, Putnik et. al [24] performed an SNA study on fourth year engineering students, 
finding that students who had more frequent and varied types of interpersonal interactions 
attained higher final course grades. Using data from a learning management system, Gupta [25] 
found that high-school students who reported more interactions and/or were more popular had 
better grades than their counterparts.  

 
While these and similar studies provide valuable insights regarding students’ 

interpersonal networks and outcomes, Elliott and colleagues [18] found that students’ course-
specific study networks included ~20% non-course enrolled students. Thus, researchers may find 
broader relationships between social interactions and learning outcomes by performing SNA 
beyond a single cohort, classroom, or online environment.  
 

Researchers hoping to generate broader conclusions, however, often face difficulties 
scaling to a larger network scope. For example, identifying holistic student networks may require 
researchers to use open-ended name generators. In Campbell and Lee’s [26] review across four 
SNA studies, open-ended name generators prompting intimate connections yielded smaller ego-
networks than studies asking about multiple types of connections, demonstrating the impact of 
survey length on participants’ responses. While allowing holistic student responses, open-ended 
name generators can also introduce survey fatigue and reference ambiguity, causing many 
researchers to defect to close-ended name generators. To realize conclusions generalizable for 
engineering education, however, it is necessary to deploy less-bounded name generators and 
address the resulting reference ambiguity. 
 

SNA study participants introduce reference ambiguity by referring to their alters by a) 
references that are spelled closely (literal string similarity) to the alter’s actual identity or b) 
references that sound the same (phonetic similarity) to the alter’s actual identity. For example, 
the alter “John Deer” could be referenced ‘Jon Deare’ in the name-generator data. In both cases, 
it is important for researchers to identify and correctly resolve name variants in the interaction 
data to build correct ego-networks. While manual approaches to find name variances exist [20], 
several computational methods for identifying string similarity show promise in rapidly 
resolving reference ambiguity.  
 

The Levenshtein Distance (LD) [27], generates a number representing literal string 
similarity between a source string and a target string. Specifically, each letter insertion, deletion, 
or replacement adds a selected weight to the LD as shown in Figure 1. 

 



  

Figure 1. Visual representation of the Levenshtein Distance with weights of one  
assigned to: deletions, replacements, and insertions between the target string  
(JohnDeer) and source string (JonDeare). 

 
Researchers have used the LD for various applications. For example, Haldar and 

Mukhopadhyay [28] applied the LD to improve dictionary lookup methods, and Klapaftis and 
Manandhar [29] used the LD in a combined-method entity resolution effort to disambiguate 
name references in Wikipedia articles. 
 

The Double Metaphone algorithm (DM) [30] generates a key value that represents the 
pronunciation of a string. For example, names ‘Caitlyn’ and ‘Katelynn’ are not string similar 
(LD of 4) but have the same DM key value: [‘KTLN’, ‘’]. To gain a numerical understanding of 
phonetic similarity, researchers can use the LD on source and target DM key values. Both the LD 
and DM algorithms assisted our efforts in addressing SNA data reference ambiguity.   
 
Methods 

 
We began our efforts to disambiguate student network data by manually resolving a data 

set which contained 3.997 references (data collection described in [19]). We realized that our 
manual efforts, while effective, were time-consuming [20]. Therefore, to reduce the time spent to 
resolve future data sets, we wrote an automated entity resolution module, EntityRAID, to filter 
the ambiguous data in the same manner as our manual methods. To run EntityRAID, we input 
raw name-generator data. Additionally, we opted to input a roster of known identities to increase 
ER accuracy. After filtering the data in stages, EntityRAID returned a fully resolved data set and 
accompanying adjacency matrix, as depicted by Figure 2.  

Figure 2. EntityRAID Input and Stages 
 

Specifically, EntityRAID resolved high confidence references (references we could 
attribute to their correct identities in one step: participants’ self-reported identities or roster-
identities) first. EntityRAID then resolved low confidence references (references to non-
participant identities) and concluded with no confidence references (first name references to non-
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participant identities). Consequently, our confidence in accurately attributing references to 
identities decreased with each stage. 
 
Stage 1: Identifying High Confidence Identities 
 

To begin the EntityRAID module, we needed a method for recording identities, including 
self-reported nicknames. For this purpose, we wrote and called the function ‘registryNames’. In 
‘registryNames’, we initialized an empty list of key values and propagated the key with user-
provided data containing each unique participant’s identity and identifying number (when 
possible) as shown by Table 1. In our data collection methods, we used a registry query to invite 
potential participants to the study [19]. Recognizing the potential in these full-confidence 
identities, we used this registry of known identities to initialize our high confidence key. 
 
Table 1. Example of High-Confidence Key 
      
School # Number First Name Last Name First Name Last Name First Name Last Name Cont. 
1583923 1 John Doe Jon Doe Jonny Doe … 
1434950 2 Bob Social Bobbie Social Bobby Social … 
… … … … … … … … … 

 
After initializing a key of known identities, we wrote and called the function 

‘addParticipantNames’ to add participants’ self-reported full-name identities to the key. This 
function first checked if the participants’ school numbers, which were also self-reported in our 
study, were present in the registry-initialized high confidence key. If the school number was 
present in the key, the ‘addParticipantNames’ function added the students’ self-reported identity, 
including their self-reported nicknames, to the same registry-initialized key row where the school 
number appears. If not, ‘addParticipantNames’ assigned the participants’ self-reported identity to 
a new key row.  
 

One complication in the ‘addParticipantNames’ section of the module was adding 
participants’ self-reported nicknames. In our study, participants reported their nicknames in a 
single survey entry. Specifically, we found students reported their nicknames in the following 
formats: 
 

• [Nickname, Lastname] 
• [Nickname 1, Nickname 2] 
• [Nickname 1 ‘and’ Nickname 2] 
• [Nickname 1 ‘or’ Nickname 2] 

 
To address these inconsistencies, we wrote ‘addParticipantNames’ to identify if a participant 

used one of three common delimiters (i.e., “and”, “or”, or “,”) in their response. If so, 
‘addParticipantNames’ split the response into multiple nicknames by the respective delimiter. If 
participants reported their last name as part of their nickname, we neglected their last name to 
prevent ‘addParticipantNames’ from mixing first and last name entries in the key. After 

Self-Reported Nicknames 



  

delimiting values and assigning the correct last name, ‘addParticipantNames’ added each self-
reported nickname to the correct key index, as shown by Figure 3. 

          Figure 3. Stage 1 Data Flow Diagram.  
 
At the conclusion of Stage 1, EntityRAID returned a high-confidence key which contained the 
participants’ school number, assigned key number, and identity (including nicknames) in each 
row. 
 
Stage 2: Resolving High-Confidence Identities 
 

The second stage in the EntityRAID module was to resolve exact instances of high 
confidence identities we identified in Stage 1. To accomplish this step, we wrote and called the 
function ‘replacingFunc’, which looped through the filtered name generator data and replaced 
exact references to key identities with their corresponding key number, as portrayed by Figure 4. 

 
             Figure 4. Stage 2 Data Flow Diagram. 
 

At the conclusion of Stage 2, EntityRAID returned the name-generator data with all high-
confidence references replaced by their corresponding identities’ key number. At this stage of the 
data filtering, we left all remaining ambiguous references unresolved.  
 
Stage 3: Resolving Name Variations 
 

The third stage in the EntityRAID module was to discover similar name pairs 
(ambiguous references that are potential name variants of high confidence identities in the key). 
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To discover name pairs, we wrote and called the function ‘compareKeytoData’, which compared 
every ambiguous reference in the filtered data to every identity in the key, as shown by Figure 5.  

 
          Figure 5. Stage 3 Data Flow Diagram 

 
For each key identity and reference pair, we used the LD to identify the pair’s literal 

string similarity and the LD of the DM key values (LD(DM)) to identify phonetic similarity. To 
identify thresholds for the LD and LD(DM), we first called ‘compareKeytoData’ with presumed 
over-relaxed thresholds. Using the thresholds to filter out unnecessary comparisons (known as 
block cleaning [31]), we inspected the remaining comparison results in .csv and tightened the 
thresholds to achieve more accurate pairs. After iterating, we heuristically determined that first 
and last name 𝐿𝐷 ≤ 2 and first and last name 𝐿𝐷(𝐷𝑀) ≤ 1 consolidated name variances 
accurately. At the conclusion of Stage 3, EntityRAID returned the name-generator data with all 
high-confidence identities (including their variants) resolved.  
 
Stage 4: Resolving Remaining Ambiguous References 
 

After we resolved all participant references with confidence, the last stage in the 
EntityRAID module was to resolve all remaining ambiguous references. To accomplish this step, 
we wrote and called the function ‘remainingAmbiguousNames’, which created a low confidence 
key using non-participant references with first and last names. To distinguish the disambiguation 
results, we started the low confidence key numbering at the largest high-confidence key index 
plus one. Using the lower-confidence key, we used ‘remainingAmbiguousNames’ to loop 
through the data and replace exact matches of low confidence key identities with their 
corresponding key number, as depicted by Figure 6.  

       Figure 6. Stage 4 Data Flow Diagram 
 

After developing and resolving references in the low confidence key, we determined that 
we did not have enough information to resolve first name-only references. For this reason, we 
replaced each first name-only reference, including identical references, with a newly assigned 
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number. Although we did not create a key for first name-only references, we started the 
numbering at the largest low-confidence key index plus one.  

 
At the conclusion of the ‘remainingAmbiguousNames’ function, EntityRAID returned a 

fully resolved version of the raw survey data and the final key. With a resolved data set, 
EntityRAID also returns the adjacency matrix of the resolved interaction data. 
 
Results and Discussion 
 

We deployed EntityRAID on our study data with 8,034 references. For simplicity, we 
summarized our results in Figure 7. 

 
Figure 7. EntityRAID Disambiguation Map 
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 More specifically, EntityRAID resolved 4,906 high confidence references (2,747 alters 

and 2,159 egos) in addition to 321 high confidence name variations, with the high-confidence 
key containing 1,848 identities. Of the remaining 2,807 ambiguous references in the data, we 
added 1,379 references to the full-name, lower confidence key. Using the lower confidence key, 
EntityRAID resolved 2,220 ambiguous references. Finally, EntityRAID provided 587 first name-
only references (13 of which were self-reported identities) a new key number. We summarized 
the results in Figure 7. 
 

We consider EntityRAID successful in reducing the researchers’ resource cost, 
completing the majority of an estimated 200-hour manual disambiguation process in 2 hours. 
While retaining the significant time-savings, we could manually identify network proximity 
measures to resolve the remaining ~7% (i.e., first name-only entries) with higher confidence. 
Specifically, by combining network proximity scores with the existing literal- and phonetic- 
string similarity scores [32], we may further gain the information we need to resolve first name-
only entries with confidence. For example, if ‘Andrew Dendrogram’ interacts with ‘Benjamin’ 
and ‘Benjamin Cluster’ reports interacting with ‘Andrew Dendrogram’, then we are more 
confident that the reference ‘Benjamin’ should be consolidated to ‘Benjamin Cluster’. 
 

Notably, EntityRAID returns an adjacency matrix resolved according to the full key. If 
researchers choose to use network similarity measures to resolve first name-only entries, a 
capable computational method to deploy is community detection (the process of identifying 
closely related nodes in a large nodal network) using the adjacency matrix. However, employing 
community detection techniques can be time-consuming and must be analyzed for accuracy. 
With only ~7% of references remaining to resolve, manual resolution [20] proved sufficient for 
our subsequent ego-network analysis. 
 
Conclusion 

 
Automated entity resolution methods can significantly reduce the time-resource cost for 

large-scale, holistic, educational SNA. To make automated entity resolution methods more 
accessible, we wrote EntityRAID to filter and resolve raw student interaction data. EntityRAID 
operates in four main functions: 1) ‘addParticipantNames’ builds a key using high confidence 
identities (i.e., students’ self-reported names/nicknames and roster names) 2) ‘replacingFunc’ 
resolves each exact-match reference to the high-confidence key 3) ‘compareKeytoData’ resolves 
name variants to the high confidence key using LD and DM and 4) 
‘remainingAmbiguousNames’ resolves remaining ambiguous references with a lower confidence 
key or new number.  
 

Using EntityRAID on a data set of 8,034 references, we resolved 5,227 references with 
high confidence and 2,220 with lower confidence (~93% total references resolved with 
confidence). Further, we resolved 587 references with no confidence. For our ego-centric study, 
EntityRAID was adequate to gain helpful conclusions for large interaction data sets. To improve 
accuracy, users may deploy manual or clustering techniques directly on EntityRAID’s output 
data. Overall, EntityRAID significantly reduces the resource requirement for performing large-
scale SNA. Reducing resource cost will enable engineering educators to research more holistic 



  

student networks than previously studied. Results of these future studies may yield more 
generalizable and accurate conclusions about which social practices help students succeed.   
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