
Paper ID #38046

Board 297: Foundational Strategies to Support Students with Diverse
Backgrounds and Interests in Early Programming

Aakash Gautam, San Francisco State University
Prof. Shasta Ihorn

Shasta Ihorn is an Assistant Professor of Psychology at San Francisco State University.

Prof. Ilmi Yoon

Professor Ilmi Yoon, Professor of Computer Science at San Francisco State University (SFSU), is an
expert in gamification and game development, particularly in interactive media, 3D over the Internet, and
network information visualization. She has collabo

Anagha Kulkarni, San Francisco State University

Anagha Kulkarni is an Associate Professor of Computer Science at San Francisco State University. Her
research investigates problems at the intersection of information retrieval (IR), natural language process-
ing (NLP), and machine learning (ML). Her work a

Michael Savvides, San Francisco State University

©American Society for Engineering Education, 2023



Foundational Strategies to Support Students with Diverse
Backgrounds and Interests in Early Programming

Introduction
Previous research has identified numerous challenges in teaching computer programming in the
classroom, including students’ varying prior knowledge and experiences [1, 2]. These challenges
have drawn attention to various pedagogical strategies and curricular materials [3, 4, 5]. The
problem has also prompted a number of technological advances and design solutions [6, 3]. As a
field, we have moved forward. However, there remains a significant gap in making introductory
programming courses accessible to all students.

Students in introductory programming classes come from diverse backgrounds and have a wide
range of interests. Some have completed comprehensive introductory computing courses in high
schools, while others have not. Some students have access to a rich ecosystem of computing
resources, whilst others do not. These characteristics are heavily influenced by larger historical,
social, and economic challenges. Individual abilities and interests also differ. Some students are
less comfortable exploring computing systems, while others are more at ease exploring uncertain
technological problems.

Furthermore, because the content of introductory programming is deemed “simple enough”,
many institutions with limited resources, including ours, rely on graduate students to teach
courses. Graduate students frequently teach for a semester or two before they graduate. As a
result, many introductory programming instructors do not have the time or resources to iterate and
enhance their pedagogical practice. As student interest in computing grows, introductory
programming class sizes are expanding, requiring institutions to provide several sections of the
same course, resulting in variations in instruction quality and student learning gains.

Our ANON project is situated within these pedagogical and institutional complexities. The
project aims to support low-income students in their early computing journey. A cohort of
freshmen students participates in a year-long co-curricular program supported by a network of
educators and peer mentors. The project places a strong emphasis on fostering student retention
in introductory programming classes by providing academic and community support.

In this paper, we focus on a week-long workshop conducted between the two academic terms of
the program, where we implemented three evidence-based foundational practices for supporting
students with diverse backgrounds and interests in introductory programming. These three
practices are: (1) enabling multiple encounters with programming constructs, (2) facilitating
collaborative learning, and (3) implementing pedagogical strategies for differentiation. These
three practices are not novel; in fact, they are supported by extensive research in computing
education and cognitive science [7, 8, 9, 10]. We provide reflections on strategies to adapt these
practices to support instructors in resource-constrained settings in enabling computing for all.



Methodology
The approach discussed in the paper is exploratory and incremental. The first author, who also
teaches an introductory programming course, observed that towards the end of the semester, many
students who completed his introductory programming course voiced uncertainty regarding
various concepts covered in the class. The discussion with the students shed light on the need for
more hands-on practice to master the concepts. This sparked the idea for a separate week-long
workshop for a group of students who were both involved in the ANON project and had recently
finished the introductory programming course. The first workshop was held in January 2022 with
a group of ten students, and it was repeated in January 2023 with a group of eleven students.

Workshop Sessions

Given the diversity of the student body, students were asked to highlight issues covered in the
introductory programming class that they struggled with before to the workshop and on the first
day of the workshop. The gathered topics were introduced primarily through a three-way
structure: (1) large group discussion with an example programming problem, (2) working with a
smaller group to solve problems, allowing for more hands-on practice, and (3) homework
assignment to work on the programming problems individually.

The majority of the workshop sessions followed the same format. The sessions began with a
discussion of the topic at hand as well as session’s goals. Certain sessions necessitated a more
thorough introduction to the subject (e.g., object-oriented programming). During the session, we
conducted small group discussions to uncover what students found easy or hard and why. This
enabled us to tailor the subsequent hands-on programming session. Following the presentation
and the discussion, we divided the students into smaller groups and provided them with problems
to work on. Instructors and mentors were present in the smaller groups to scaffold their
exploration of the problem. Typically, the students solved two problems, after which we all
convened in the larger group to discuss. After the discussion, we again went back to the smaller
groups to work on programming problems. The workshops involved senior undergraduate
students who mentored the students in solving the problem. The near-peer mentor system allowed
for more interaction and guidance.

Data Collection and Analysis

Different types of data were collected for this study. First, we conducted a survey with students
who took introductory programming classes. We ran the survey with 251 students across three
semesters from Fall 2021 to Fall 2022. The survey sought to understand the student’s level of
confidence in their ability to write programs and the importance they placed on programming in
their future career.

Following the semester-long introductory programming classes, we conducted a week-long
workshop for a small group of students who were part of the ANON project. We report on the two
workshops that we conducted in January 2022 and January 2023. The data contains reflections
noted down by the instructor and near-peer mentors during the workshop. We also report on the
data from the pre-workshop and a post-workshop survey.



Findings
First, we report on the confidence and interest of students enrolled in introductory programming
courses. We draw upon their response to list topics in introductory computer science that
remained difficult for the students. These topics form the foundation of our week-long workshop.
We then present our reflections on the workshop.

From the Initial Survey

In the first day of the introductory programming classes, students were asked to complete a
survey. The survey aimed to understand if the students had access to reliable computer where they
could install a software (IntelliJ) and a reliable Internet connectivity to submit assignments. This
was included to ensure that lack of material resources did not hinder students’ learning. Along
with these questions, we asked the students about their prior experience with programming, their
confidence in learning programming, and the importance they placed on programming in the
future. For the latter two, students were asked to rate from 0 to 100, where 0 denoted minimum
confidence or importance.

The students’ prior experiences in programming varied. 106 students had no prior programming
experience, while 145 had previously encountered programming. 52 of the 145 had prior
knowledge of Java, the language used in our introductory and intermediate programming classes.
93 of the students had worked with a variety of programming systems and languages, including
HTML, Scratch, Python, and in one instance, C++. Similarly, there was quite a wide variance in
the level of confidence expressed by the students. 74 out of the 241 who shared their ratings, rated
their confidence as greater than eighty percent. 23 respondents reported a level of Similarly, the
significance they placed on programming ranged from 15 to 100, with an average of 84.

Variation was also apparent in the students’ expressions regarding their motivation to join the
class. A group of students with prior experience in the class expressed a desire to expand their
knowledge by stating, “I want to reinforce my foundation for java” and, in another students’ case
“ I have taken C# and I really enjoyed it and I do wanna extend my knowledge and move onto
java”. In contrast, a substantial number of students were concerned about their ability to learn in
class. One student with a self-reported confidence level of 28 out of 100 stated, “I am nervous for
this class because I have no background in coding”. Few others noted the lack of confidence
stemming from the misconception that programming is ”math-intensive,” with some asking, ”Do
I need to take math classes to help with this course?” We observed that students with greater
confidence had a clearer idea of what they wanted to learn, whereas the lack of knowledge of the
topics to be covered in the introductory course appeared to erode the students’ confidence, as one
student stated, “computer science intimidates me because it’s almost like a new language to
learn”.

As stated in the introduction, this diversity in programming skills poses a challenge for adapting
pedagogical strategies. Some schools can afford to create different level courses, but many
institutions, like ours, are unable to provide nuanced differentiation in early class offerings. We
must work within these constraints and develop pedagogical strategies to differentiate between
students with diverse programming backgrounds and interests.



Observations and Reflections From the Workshop

We aimed to tailor the workshop to the students’ experiences in their introductory programming
course due to the disparity in students’ prior programming knowledge, confidence, and perceived
importance of programming. In order to accomplish this, we asked the students for a list of
difficult topics, which we then covered in the workshop.

Below, we report the high-level observations and reflections from the workshop sessions.

Varying challenges in introductory programming: Comparable to the larger classes, students
in the smaller group expressed varying levels of comfort with introductory programming topics.
In our first workshop, conducted in January 2022, students were asked to write diary entries
describing the topics they had found either interesting, difficult to learn but have mastered, or with
which they continue to struggle. The diary entry pointed to stark differences in the student’s level
of comfort. For instance, one student found the introductory course to be a repetition of their
high-school programming writing,“[The intro course] for me was like a review class. I was
probably ahead or at least knew more than the average student in [the class] because I have taken
an AP CSA course in high school which teaches mainly Java.” In contrast, another student
reported continuing difficulties with programming fundamentals: “I still have trouble
remembering syntaxes ...”

We had focused on enabling smaller groups to meet and discuss problem-solving strategies,
which seem to help. Ideas shared by near-peers facilitated in deeper discussion, drawing forth the
nuances of the challenges faced and alternative approaches they could take. Whereas in a larger
class or with an instructor-led discussion, some of the nuanced approaches could be missed, a
collaborative discussion among near-peers facilitated in leveling the knowledge gap, especially
for those who felt they were behind. Students’ reflections on the workshop revealed the
importance of small-group collaboration, as one student wished for ”time for group activities or a
time where we would solve questions as a group, in order to build community and make it easier
to understand certain concepts from peers.”

Difficulty in formulating strategies to get started: During the sessions, we noted that the
students often struggled to get started on solving the problem. They needed scaffolds to support
working on the problem, even on problems that they had mentioned having high confidence. They
were able to solve the problem once they received the initial support. For instance, when a group
of students encountered a problem that required them to work on compound Boolean conditions,
we began with a discussion in which we charted their thought processes. Then, we worked to
convert these processes into Java statements. On the subsequent days too, a significant number of
students found it difficult to get started on solving the problem, such as in initializing arrays and
using them in the problem.

Other students were able to devise the solution, writing it in English or pseudocode. Some
students found it difficult to convert the steps into Java code. A student, for example, struggled in
translating the conditions they had written into Java. The condition required compounding with
both AND and OR. For example, students tried to use 1 < x < 10 instead of 1 < x && x < 10.
Even though the student had experience and confidence in writing AND and OR statements as



part of other if-else statements, they struggled to write the compound statement.

These observations suggest a need for a greater exposure to a variety of problem-solving
strategies that would assist students in initiating the problem-solving process. Our introductory
programming course, like many others across the country, emphasizes writing code but provides
few opportunities for students to read other codes. As children progress from learning to read to
reading to learn, we believe novice programmers should read code in order to learn to code.
Indeed, student feedback also highlighted the need for more opportunities to view and study the
code of others. When asked what they would have liked to see more of in the workshop, one
participant mentioned the opportunity to “watch informative videos and also see coding projects
and go over it step by step.” In light of this, we have begun supplying students with code
examples in our revised introductory programming course.

Barriers arising from fast-paced, broad introductory programming course: Learning is a
journey where a learner incrementally construct newer understanding based on their existing
knowledge and the available learning support mechanisms [11]. Vygotsky introduced the concept
of a learner’s Zone of Proximal Development, which is defined as ”the distance between the
actual developmental level as determined by independent problem solving and the level of
potential development as determined by problem solving under adult guidance, or in collaboration
with more capable peers.” [11, pp.86]. Here, the guidance and collaboration serve as a support
mechanism that will aid in the expansion of the learners’ capacity to construct additional
knowledge. In programming education, researchers have utilized Vygotsky’s zone of proximal
development to comprehend the trajectory of learning and to recommend interventions and
scaffolds to support the learning process (e.g., [12, 13, 14]).

To facilitate a growing zone of proximal development, students must engage with the available
scaffolds and work on problems. In our institution, as in many others across the nation,
introductory programming courses move quickly and cover a wide range of topics. In our
introductory course, we introduce basic elements of programming (variables, expressions and
evaluation), Boolean expressions and conditional statements, loops, one and multi-dimensional
arrays, functions and modular programming, fundamental concepts of object-oriented
programming, and exception handling. All of these topics are introduced over the course of a
semester, which consists of approximately 40 hours of lecture and recitation. This pace
encourages a more performance-based learning style, in which students focus on earning a grade
rather than mastering the concepts. More broadly, it diminishes students’ opportunities to make
mistakes, reach out to peers or teachers, and seek guidance.

During our workshop, we noted the challenge arising from the fast-paced course. One of the
positive aspects of the workshop, according to the students, was the opportunity to master
concepts that they had not had sufficient time to learn previously. This is evident, for instance, in
a student’s reflection on the workshop, in which they wrote, “Learning about objects, classes,
inheritance, parent classes, child classes and more were very helpful since it was pretty briefly
covered in [introductory programming class] at the end of the semester and I didn’t feel like I
gained a full understanding of it.” In addition, students valued the opportunity to make mistakes
afforded by the workshop, stating, “Overall, I feel that I just need a bit more practice writing
arrays, nested loops, and understanding the file class’s usage.” Moreover, students appreciated the



space enabled by the workshop to make mistakes, noting, “Personally I learn better in the
breakout rooms when I get to make mistakes.” Another participant appreciated the workshop,
remarking, “... having a person to guide and help you was very helpful. Specially since there is
very few students in the group it’s very easy to receive help from the mentor. Going over topics
that are difficult or having trouble remembering was very refreshing to me.”

Working with fewer students allowed us to pay close attention to each student’s work and provide
the support they required. It would have been much more challenging to provide similar support
in a larger group, which is the typical situation instructors encounter when teaching introductory
programming classes. Nonetheless, we recognize that the broad scope of topics and rapid
introduction of them in an introductory programming course can have a negative effect on
students, particularly those with no prior programming experience. As part of the course, students
should be encouraged to master fewer but more fundamental programming concepts, according to
our argument. This change would permit students to make more errors and provide opportunities
to learn from those errors. We believe that this will go a long way toward providing differentiated
and individualized assistance, even in larger classroom settings.

Discussion

In this paper, we describe our findings from two one-week workshop designed to assist students
who had completed introductory programming courses. The workshop expanded on concepts
from the introductory programming course that the students found difficult to grasp and had not
mastered. We designed the workshop to enable collaborative learning, facilitate multiple
encounters with programming constructs, and explored ways to provide tailored support to each
student.

These three elements included in the workshop are foundational learning practices; however, in
settings with limited resources such as ours, it remains difficult to implement them in larger
classroom settings. Considering this, below, we list down three implications for introductory
programming classes that we believe can enable us to support students with diverse backgrounds
and interests in introductory programming classes.

• Incorporate reading code as a critical approach to learn to program. Students require
multiple programming experiences. It is difficult to provide multiple encounters if we only
emphasize writing programs. Reading existing code, which is analogous to
reading-to-learn, can provide students with opportunities to learn diverse and alternative
problem-solving strategies.

• Facilitate collaborative learning opportunities by incorporating near-peer learning
groups. The success of programs such as Process oriented guided inquiry learning
(POGIL) has paved the way for more collaborative learning in introductory classes.
Programming and computing are, after all, highly collaborative endeavors.

• Enable rooms to make mistakes. Students’ varying prior programming experiences pose a
challenge for introductory programming courses. This complicates the implementation of
pedagogical strategies for differentiation. Encouraging students to explore, make mistakes,
and learn from them can provide the space required for students to receive the appropriate



level of assistance. We observed that allowing such space may necessitate two closely
related strategies: (1) reducing the breadth of the topics covered in the introductory course,
and (2) introducing the topics slowly.

Conclusion

Supporting students with diverse interests and background to learning programming remains a
challenging task, especially in resource-constrained settings. We argue that by enabling multiple
encounters with programming constructs, facilitating collaborative learning, and implementing
pedagogical strategies for differentiation, instructors can provide students with the support they
need to succeed in introductory programming courses. While these practices are not novel, we
noted during our workshop that these strategies are effective in improving student engagement
and learning outcomes. By adapting these practices to resource-constrained institutions, we can
help realize a broader and inclusive computing community of learners.

References

[1] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties in introductory programming: A
literature review,” ACM Transactions on Computing Education (TOCE), vol. 18, no. 1, pp. 1–24, 2017.

[2] K. L. Lewis, J. G. Stout, N. D. Finkelstein, S. J. Pollock, A. Miyake, G. L. Cohen, and T. A. Ito, “Fitting in to
move forward: Belonging, gender, and persistence in the physical sciences, technology, engineering, and
mathematics (pstem),” Psychology of Women Quarterly, vol. 41, no. 4, pp. 420–436, 2017.

[3] C. Mayfield, S. K. Moudgalya, A. Yadav, C. Kussmaul, and H. H. Hu, “Pogil in cs1: Evidence for student
learning and belonging,” in Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education V. 1, 2022, pp. 439–445.

[4] E. Soep, C. Lee, S. Van Wart, and T. Parikh, “Code for what,” in Popular Culture and the Civic Imagination:
Case Studies of Creative Social Change. New York University Press,, 2020, pp. 89–99.

[5] A. G. S. Raj, J. M. Patel, R. Halverson, and E. R. Halverson, “Role of live-coding in learning introductory
programming,” in Proceedings of the 18th koli calling international conference on computing education
research, 2018, pp. 1–8.

[6] D. Weintrop and U. Wilensky, “Transitioning from introductory block-based and text-based environments to
professional programming languages in high school computer science classrooms,” Computers & Education,
vol. 142, p. 103646, 2019.

[7] M. Kendal and K. Stacey, “The impact of teacher privileging on learning differentiation with technology,”
International Journal of Computers for Mathematical Learning, vol. 6, pp. 143–165, 2001.

[8] M. J. Van Gorp and S. Grissom, “An empirical evaluation of using constructive classroom activities to teach
introductory programming,” Computer Science Education, vol. 11, no. 3, pp. 247–260, 2001.

[9] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The effects of pair-programming on performance in an
introductory programming course,” in Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, 2002, pp. 38–42.

[10] A. Gautam, W. Bortz, and D. Tatar, “Abstraction through multiple representations in an integrated
computational thinking environment,” in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, 2020, pp. 393–399.



[11] L. S. Vygotsky and M. Cole, Mind in society: Development of higher psychological processes. Harvard
university press, 1978.

[12] J. Whalley and N. Kasto, “A qualitative think-aloud study of novice programmers’ code writing strategies,” in
Proceedings of the 2014 conference on Innovation & technology in computer science education, 2014, pp.
279–284.

[13] A. R. Basawapatna, A. Repenning, K. H. Koh, and H. Nickerson, “The zones of proximal flow: guiding
students through a space of computational thinking skills and challenges,” in Proceedings of the ninth annual
international ACM conference on International computing education research, 2013, pp. 67–74.

[14] N. Anderson and T. Gegg-Harrison, “Learning computer science in the” comfort zone of proximal
development”,” in Proceeding of the 44th ACM technical symposium on Computer science education, 2013, pp.
495–500.


