
Paper ID #37937

Work-in-progress: Exploring the computer science curriculum from
undergraduate students’ perspectives

Dr. Hye Rin Lee, University of Delaware

Hye Rin Lee is a NSF postdoctoral fellow at the University of Delaware. She received her Ph.D. at the
University of California, Irvine with a concentration in Human Development in Context. Her research
interests include motivation, psychological interventions, role models, academic engagement, and higher
education.

Sotheara Veng, University of Delaware
Yiqin Cao, University of Delaware

M.Ed in Educational Technology MS. in Statistics

Juliana Baer, University of Delaware
Teomara Rutherford, University of Delaware
Austin Cory Bart

©American Society for Engineering Education, 2023



Work-in-progress: Exploring the computer science curriculum from 
undergraduate students’ perspectives 

Abstract—With large attrition rates among computer science (CS) majors, it is clear 
that CS undergraduates face challenges completing their degrees. Although much research 
has tested various teaching strategies and how course outcomes are associated with drop-
out rate, little attention has been paid to using a bottom-up, student-centered, qualitative 
approach with a large sample to understand how to improve required CS courses and 
curricula. In the present study, we investigated CS college students’ self-reported 
perceptions of curriculum design and instruction. We invited feedback from 
undergraduate students who enrolled in CS courses from various stages of the program (N 
= 445) at a large public Mid-Atlantic university. Specifically, we evaluated what students in 
CS would change to their required CS courses and/or course sequence through open-ended 
responses. Results of thematic coding of these responses revealed that students wanted 
clear connections between courses, course content and program design that were in line 
with practical skills used in the CS industry, and more effective academic advising and 
assistance from instructors. Implications and areas of future research will be discussed 
with respect to beneficial reforms to enhance student learning experiences in CS programs. 
 Keywords—computer science, course sequence, curriculum design, higher education 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I. INTRODUCTION 
With rapid technological advancements, computer scientists are needed more than ever to 

support our nation’s economy and global competitiveness. However, approximately 59% of 
college students in computer science (CS) programs drop out [1]. Many efforts have been made 
to reduce this rate [e.g., 2, 3]. One area of research that has been examined to reduce this high 
attrition rate is CS course and curricula design [4, 5, 6]. Investigating the CS undergraduate 
program is important for finding strategic ways to improve student learning and motivation to 
continue in the CS pathway [5, 6]. Prior literature on students’ pathways through CS has focused 
on both broad [e.g., frameworks for curricular design and curriculum philosophies; 7, 8, 9, 10, 
11] and specific aspects [e.g., teaching and learning approaches; 3, 12] of the CS courses and 
curricula. These studies lack important information on why and how certain curricular elements 
are more or less successful. Undergraduate students themselves have agency regarding their 
decisions to persist in the CS major [13, 14, 15], yet few studies to date have used a bottom-up, 
student-centered, qualitative approach to understand how to improve CS courses and curricula. A 
qualitative approach can help researchers gain greater insights into students’ experiences in the 
program without limiting their responses to predetermined lists as in typical top-down survey 
research [16, 17]. Furthermore, as students’ progress along the CS undergraduate pathway, they 
may gain greater insights into their program and into what actions could be undertaken to 
improve their success. However, much of the prior work focuses on students who are in the 
beginning stages of their CS pathway, such as introductory CS courses [e.g., 2, 3, 4]. In the 
current study, we leveraged a student-centered, bottom-up, qualitative approach to examine CS 
undergraduate students’ perspectives toward course content and curriculum sequence. In 
particular, we asked students from diverse points in the CS pathway (beginning, mid, and end-of-
degree) about their suggestions for required CS courses and course sequences. This method 
allows us to detect deeper interpretations and explanations into students’ CS experiences in their 
own voices.  

II. LITERATURE REVIEW  
A. Positionality  

We approach our work as researchers grounded in theories of STEM education, 
specifically motivation and self-regulated learning [18, 19, 20, 21, 22]. Five out of the six 
authors did not graduate with a bachelor's degree in CS. As such, our lived educational 
experiences may limit the way we understand students’ relevance and value of CS courses and/or 
sequences. As a team, we approached our work using a pragmatic lens in order to positively 
impact changes to CS courses and/or sequences. Moreover, due to our methodological approach, 
we do not frame our work under a specific theory; we focus on using students’ own words (i.e., 
bottom-up approach) to guide implications for improving CS courses and/or sequences. 
Moreover, we believe that the environment plays an important role in understanding students’ 
perspectives on CS courses and/or sequences for promoting motivation and performance in the 
CS pathway. Learning is a social construct that is influenced by the people and circumstances 
around the person [23]. If the needs of the learners are not taken into account when designing the 



classroom, it can negatively impact their ability to learn [24, 25]. Therefore, in the present study, 
we believe that investigating student-centered responses about the CS pathway (e.g., class 
environment, course sequence) is vital to improve student learning and persistence in CS.  
B. CS Curriculum Design 

There have been great strides in determining potential areas of improvement among CS 
courses and programs [e.g., 26, 27, 28]. One area of literature focuses on college students not 
having the necessary skills and knowledge to work in the industry [29, 30, 31, 32]. In regard to 
their soft skills, graduates tend to struggle with their verbal [31, 33] and writing [28, 30, 34] 
skills, in particular, clearly articulating their problems when they need help [29]. In regard to 
technical skills, graduates often lack the ability to use a number of industry software tools, such 
as configuration management and database tools [29, 32, 35]. Another area of the literature 
focuses on college students having difficulties in the CS program due to their required 
mathematics courses [36, 37, 38]. For example, students found an Automata Theory course 
challenging because it required a strong mathematics foundation on logic and problem-solving 
skills [38]. A strong background in mathematics, however, is thought to benefit learning in CS, 
especially in relation to algorithm design, computations, and data skills [39]. Other areas of the 
literature have explored issues about the CS curricula related to collaborative work [40], gender 
equality [41], and knowledge assessment [42]. Although this research has illuminated a 
constellation of issues around CS courses and curriculum, more work is needed to understand 
what challenges are the most pressing and salient to students. Identifying specific challenges 
noted by students can contextualize existing research and present new ideas for instructors and 
administrators, allowing greater prioritization and improvements.   

Although prior researchers have aimed to identify and address specific ways to improve 
CS courses and curriculum [e.g., 2, 43, 44], there has been less attention on identifying more 
holistic suggestions for improvement across years in the program using students’ own 
perspectives. Most prior work used quantitative rather than qualitative methods to understand the 
deficiencies and effectiveness of CS courses and curricula [2, 26, 40]. Quantitative methods can 
be helpful in gathering large datasets relatively quickly, but also can reduce the details of 
students’ perspectives [16]. More work is needed using qualitative methods to detect CS 
students’ deeper interpretations and explanations.  
C. Current Study 

In the current study, we use data gathered from college students enrolled in CS courses in 
the fall 2022 academic term at a large public Mid-Atlantic university. As part of their courses, 
students completed a survey related to their CS and course-specific motivation and learning. For 
the purposes of the present study, we used students’ responses to two open-ended questions on 
the survey about their viewpoints toward CS courses and curricula. The study was approved by 
the university’s Institutional Review Board. The data were used to answer the following research 
questions (RQs): 

1. Do students want to change something about the required CS courses and sequence? 
2. What changes do students suggest to the required CS courses and sequence?  



3. What do students want to change the most/least about the required CS courses and 
sequence? 

III. METHODOLOGY 
A. Participants 

Six hundred twenty-four participants in CS courses from various stages in the CS 
program at a large Mid-Atlantic university were invited to complete four surveys, approximately 
every three weeks of the fall 2022 academic semester, about their learning experiences and 
motivational beliefs. Participants received half a point of extra credit from their course instructor 
per survey. The invitation noted the terms of the extra credit and provided a link to the survey via 
Qualtrics. Students who did not wish to complete the survey were provided the option of an 
alternative assignment for extra credit. For the purposes of this study, we focused on the first 
survey where 445 students opted to participate.  The analysis sample was limited to 305 college 
students who answered the optional open-ended responses.  
B. Measures 

Students answered two open-ended questions about their required CS courses and 
curricula during the beginning of their fall 2022 academic term on the first survey. Questions 
asked, “What changes would you suggest to the required CS courses and/or course sequences?” 
and “Is there anything else you would like to tell us?”  
C. Analysis  

To answer the first RQ, student responses from the question about changes they would 
suggest to the required CS courses and/or course sequences were categorized into (1) yes, I 
suggest change; (2) no, I do not suggest change; and (3) I do not know.  

To answer the second RQ, we first developed a diagram of the CS course sequence to 
familiarize ourselves with the current structure. Data analysis of student responses involved 
using an inductive, thematic approach in multiple stages [45, 46]. Three researchers (i.e., second, 
third, and fourth authors) independently identified patterns in the data using Google Sheets 
before reviewing with the first author for consensus. Each coder would go through multiple 
rounds of coding to create sub-sub-codes, sub-codes, codes, sub-categories, and categories. The 
initial round involved using in-vivo (i.e., verbatim phrases and/or words in responses) and 
descriptive (i.e., summarizing phrases and/or words in responses) techniques [46]. Subsequent 
rounds after the first round of coding involved grouping the current codes into larger codes (e.g., 
going from sub-codes to codes, codes to sub-categories). Coders also individually created a 
codebook and diagrams on the online collaborative tool Jamboard to clearly define and 
distinguish between codes. Afterwards, in the next stage of data analysis, coders met to reach 
consensus for discrepancies in order to better understand the meaning of the data [47]. In the 
meetings, a group coding framework was established, which included sub-sub-codes, sub-codes, 
codes, sub-categories, and categories. Each discrepancy was redefined and clearly distinguished 
between similar codes through discussions between researchers. Unresolved discrepancies 
between the three coders and all codes were reviewed with the first author. The transformation of 
codes and rationale behind each code change were documented in analytic memos.  



To answer the third RQ, frequencies of codes, sub-categories, and categories were 
calculated. 

IV. RESULTS 
A. RQ1 

Findings showed that 58% of responding undergraduate students (n = 176) suggested 
changes to the required CS courses and/or course sequences. On the other hand, 14% of 
responding undergraduate students (n = 44) were satisfied with the required CS courses and/or 
course sequences and did not suggest any changes. Finally, 28% of responding undergraduates (n 
= 85) expressed uncertainty over what changes to suggest to the required CS courses and/or 
course sequences.  
B. RQ2 

Through the analysis of college students’ suggestions for changes to CS courses and/or 
course sequences, three categories of codes were identified: program-level, course-level, and 
instruction-level changes. Within each category, there were multiple levels of coding that 
captured the specific changes proposed by the students (see Appendix 1). 

First, undergraduate students suggested program-level changes to the required CS courses 
and/or course sequences (see Appendix 1). The changes that students suggested were related to 
(a) “course requirements,” (b) “program content,” (c) “course sequence,” and (d) “language 
sequence.” Regarding course requirements, students wanted to (a) remove a number of courses 
from the program requirements (e.g., automata theory, assembly language); (b) add courses as 
prerequisite to other courses to prepare them better for those courses; and (c) make a number of 
courses required for the program. Moreover, students wanted the content of the program to be 
more relevant to the skills and knowledge required in the industry. Concerning the course 
sequence, students believed that some courses should have been introduced earlier within their 
own divisions, such as data structure and introduction to algorithms, as well as across lower and 
upper divisions, including logic for CS and introduction to algorithms. Furthermore, students 
suggested changes to the sequence of the languages taught in the program, including the 
positions of Python, Dr. Racket, and Java in the program.  

Second, undergraduate students suggested course-level changes to the required CS 
courses and/or course sequences (see Appendix 1). In particular, they wanted a change in (a) 
content within a course; or (b) performance assessment within a course. In regard to course 
content, students wanted more (a) “connections” between courses; (b) “improvements” in having 
a more balanced content between computer and information sciences and computer engineering, 
specific courses (e.g., introductory to computer science, data structures, front-end programming), 
and courses that connect to industry; (c) “including” topics into the CS curriculum, such as 
artificial intelligence/robotics, development (i.e., application development, web development), 
data structure, functional programming, mathematic courses for CS, MATLAB, website 
development, other teaching electives, and more courses in general; and (d) “number of 
languages taught” (i.e., too many CS software languages taught or want more variety in CS 
software languages). In regard to course performance, students wanted to change how their 



course performance is “assessed.” For example, they did not like group work and wanted fewer 
or no exams.  

Third, undergraduate students suggested instruction-level changes to the required CS 
courses and/or course sequences (see Appendix 1). Students wanted some changes to (a) how 
“knowledge” is imparted; and (b) “academic support” during instruction. In terms of knowledge 
building, they suggested (a) better estimation of students’ knowledge; (b) providing more 
overview information of courses to help students understand courses better; (c) reducing the 
amount of workload; and (d) slowing down the pace of teaching. With respect to academic 
support, students requested (a) more supportive teaching approaches; and (b) better assistance 
through providing more practice in class and from supporting agents, including professors, 
advisors, and teaching assistants.  

Fourth, undergraduate students suggested environmental-level changes to the required CS 
courses and/or course sequences (see Appendix 1). Particularly, they would like the program (a) 
to be more friendly towards students of all levels and (b) more “inclusive” of students, regardless 
of their gender and ethnicities. Some students expressed that they felt isolated, intimidated, or 
stressed. Regarding the exclusivity of the program, a number of students who identified as 
women noted that they felt discriminated against based on their gender and race.  
C. RQ3 

Among students’ suggestions for the required CS courses and course sequences, 
program-level changes (n = 115) were the most frequently mentioned. Among program-level 
changes, those assigned the “remove” code were the most mentioned. Most students wanted to 
specifically remove two courses: Automata Theory (n = 19) and Assembly Language (n = 13). 
Although other courses were mentioned, they were mentioned less frequently: Database Systems 
(n = 1), Introduction to Human-Computer Interaction (n = 1), Network (n = 1), and mathematics 
courses like Linear Algebra (n = 1), and Statistics (n = 1). The least mentioned changes were 
related to the sequence of languages (n = 5). Most of the responses related to avoiding particular 
languages as their first language to learn, including Dr. Racket (n = 2) and Python (n = 1).  

From responses related to the instruction level (n = 64), wrong assumptions of students’ 
knowledge were the most frequently mentioned suggestion (n = 18): instructors more often 
overestimated (n = 13) than underestimated their knowledge (n = 5). Six responses from students 
mentioned the problem of having an overwhelming amount of workload. 

Regarding course-level changes (n = 52), most students would like to see a wider variety 
of content relevant to the job market (n = 20), such as web development, application 
development, cloud computing, MATLAB, and functional programming. A few students also 
requested a greater variety of languages (n = 3).  

For environment-level changes, most responses were related to their negative feeling 
towards the program (n = 6): the majority felt stressed out and intimidated in the program (n = 
5). Students also expressed their feeling of being excluded (n = 4). Most of the respondents who 
noted feeling excluded believed that they felt excluded in the program on the basis of their 
gender (n = 3). 



V. DISCUSSION 
In this study we explored college students’ perspectives from various years in the CS 

program on required CS courses and curricula using a bottom-up, student-centered, qualitative 
approach. Our pragmatic approach meant we adopted a method that could help instructors at this 
large Mid-Atlantic University improve their CS courses and/or curricula. First, results showed 
that despite some students expressing either satisfaction or indifference with the CS courses 
and/or curricula, a majority of students suggested modifications to the overall program structure, 
course topics, and instructional approaches. For example, students thought that courses in the CS 
program did not connect well with each other. Aligned with Bruner’s [48] Spiral Curriculum 
Framework, learning often starts with introducing a topic, mastering that topic, revisiting that 
topic in a higher-level course, and finally making connections to other topics in the higher-level 
courses. As students responded that the latter part of the learning cycle (i.e., creating connections 
between courses) is missing in the CS pathway, one approach instructors can use is to not only 
revisit concepts from prior courses, but also ask students to reflect on how this revisited concept 
relates to the new course topic. This learning approach has been found to be successful in other 
domains, such as biological, chemical, and engineering programs [49, 50, 51].  

Additionally, findings showed that students wanted the courses to be more relevant to the 
industry’s demands. Consistent with prior work, there might be a gap between the CS courses 
and curricula and the knowledge and skills needed in the field, such as communication skills [31, 
33] and the ability to use software tools [29, 35, 32]. Therefore, there should be more focus on 
providing those skills and explicitly stating how each learning activity is useful for their future 
career goals. Particularly, students were not able to see the usefulness of their theoretical courses 
(e.g., Automata Theory and Assembly Programming Language) to the job market. Because 
acquiring both theoretical and practical knowledge is important for students’ learning in higher 
education [52, 53], instructors can use real world problems to convey their usefulness to the 
industry or may want to revisit the role of these courses in the sequence.  

Not only did students discuss how theoretical courses like Automata Theory and 
Assembly Programming were irrelevant to their future career goals, but they also found the 
course topics difficult. In order to enhance students’ learning, instructors can require prerequisite 
courses and explore ways to teach courses more effectively. For example, in Automata Theory, 
prior work has found that visualization programs, such as Java Formal Languages and Automata 
Package (JFLAP) helped students understand the material better and make the material more 
enjoyable [54, 55, 56, 57]. Other teaching strategies that can be effective for students’ learning 
include: discussing CS concepts using historical context, connecting course topics with concrete 
programming examples mastered prior to the current course, and solving practical practice 
problems pertaining to the real world [58]. In Assembly Programming, previous literature has 
found that hands-on interactions through a compact device called Raspberry Pi [59] and video 
games [43] positively impacted students’ learning experiences. Instructors in these CS courses 
and curricula might try using various techniques like those described to enhance students’ 
learning. 



Findings also suggested that there were students who felt intimidated and stressed in the 
program. In a CS class with mixed ability, low achieving students may form self-doubt, whereas 
high achievers may feel frustrated when working with students with lower abilities. Tafliovich et 
al. [60] found that many students felt intimidated in their CS courses because they knew that 
there were other students who had more achievements, such as published websites and 
applications. Moreover, students with more prior CS related experience felt that students with 
fewer skills were not able to sufficiently contribute to the group work [60]. Gender 
discrimination also contributed to the negative feeling experienced by students. This aligns with 
the finding by Bunderson and Christensen [61] where 20% of women students believed that they 
were treated differently in CS courses either by their classmates or teaching assistants. As a 
result, women students may feel less comfortable in CS programs, leading to higher attrition for 
those that identify as in this group [62]. It is crucial to prioritize effort to ensure that all students, 
regardless of their skill levels and gender, feel comfortable and supported in their learning. 

VI. LIMITATIONS 
 Some students self-identified their race or gender in their answer; connecting all 
responses to demographics may have allowed us more insight into how students from 
underrepresented groups responded. This study is limited to a sample from one large Mid-
Atlantic university; it may be useful to include a greater number of programs from universities of 
different sizes for better generalizability and comparative studies. Finally, as this work provides 
only a glimpse into different issues within the CS pathway, it may be helpful to expand data 
collection both longitudinally and with different types of data. 

VII. CONCLUSIONS AND FUTURE WORK 
This work provides insights into how programs and instructors can potentially improve 

CS courses and sequences, thereby lowering the attrition rate in such programs. In the present 
study, our findings allowed us to see students’ points of view about their CS program, including 
program structure, course topics, teaching methods, and environment. Students want a more 
interconnected structure of the program, more relevance to the industry’s demands in the 
curriculum, and more effective teaching. Implications for instructors and administrators are 
discussed throughout the paper. Future research can expand the reach of this work to other 
institutions; can triangulate with other data sources, such as observations; and can test the 
feasibility and impact of following some of the students’ suggestions.  
 
 
 
 
 
 
 
 
 



REFERENCES 

[1] X. Chen, “STEM attrition: College students’ paths into and out of STEM fields.,” National 
Center for Education Statistics, Washington DC, 2013 

[2] T. Howles, “A study of attrition and the use of student learning communities in the computer 
science introductory programming sequence,” Computer Science Education, vol. 19, no. 1, pp. 
1–13, Mar. 2009, doi: 10.1080/08993400902809312. 

[3] L. E. Margulieux, B. B. Morrison, and A. Decker, “Reducing withdrawal and failure rates in 
introductory programming with subgoal labeled worked examples,” International Journal of 
STEM Education, vol. 7, no. 1, pp. 1–16, 2020. 

[4] L. J. Barker, C. McDowell, and K. Kalahar, “Exploring factors that influence computer 
science introductory course students to persist in the major,” ACM SIGCSE Bulletin, vol. 41, no. 
1, pp. 153–157, Mar. 2009, doi: 10.1145/1539024.1508923. 

[5] T. Beaubouef and J. Mason, “Why the high attrition rate for computer science students,” 
ACM SIGCSE Bulletin, vol. 37, no. 2, pp. 103–106, Jun. 2005, doi: 10.1145/1083431.1083474. 

[6] K. J. Bunker, L. E. Brown, L. J. Bohmann, G. L. Hein, N. Onder, and R. R. Rebb, 
“Perceptions and influencers affecting engineering and computer science student persistence,” in 
2013 IEEE Frontiers in Education Conference (FIE), 2013, pp. 1138–1144. 

[7] B. Burd et al., “The internet of things in undergraduate computer and information science 
education: Exploring curricula and pedagogy,” Jul. 2018. doi: 
https://doi.org/10.1145/3293881.3295784. 

[8] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi, “The structure and interpretation 
of the computer science curriculum,” Journal of Functional Programming, vol. 14, no. 4, pp. 
365–378, Jul. 2004, doi: https://doi.org/10.1017/S0956796804005076. 

[9] J. C. Knight, J. C. Prey, and Wm. A. Wulf, “Undergraduate computer science education: A 
new curriculum philosophy & overview,” ACM SIGCSE Bulletin, vol. 26, no. 1, pp. 155–159, 
Mar. 1994, doi: https://doi.org/10.1145/191033.191093. 

[10] P. Machanick, “Principles versus artifacts in computer science curriculum design,” 
Computers & Education, vol. 41, no. 2, pp. 191–201, Sep. 2003, doi: 
https://doi.org/10.1016/s0360-1315(03)00045-9. 

[11] B. C. Wilson and S. Shrock, “Contributing to success in an introductory computer science 
course: A study of twelve factors,” ACM SIGCSE Bulletin, vol. 33, no. 1, pp. 184–188, Mar. 
2001, doi: https://doi.org/10.1145/366413.364581. 



[12] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming: A review 
and discussion,” Computer Science Education, vol. 13, no. 2, pp. 137–172, Jun. 2003, doi: 
https://doi.org/10.1076/csed.13.2.137.14200. 

[13] S. Katz, D. Allbritton, J. Aronis, C. Wilson, and M. L. Soffa, “Gender, achievement, and 
persistence in an undergraduate computer science program,” ACM SIGMIS Database: the 
DATABASE for Advances in Information Systems, vol. 37, no. 4, pp. 42–57, Nov. 2006, doi: 
https://doi.org/10.1145/1185335.1185344. 

[14] G.Y. Lin, “Self-efficacy beliefs and their sources in undergraduate computing disciplines,” 
Journal of Educational Computing Research, vol. 53, no. 4, pp. 540–561, Nov. 2015, doi: 
https://doi.org/10.1177/0735633115608440. 

[15] M. S. Peteranetz, L.-K. Soh, D. F. Shell, and A. E. Flanigan, “Motivation and self-regulated 
learning in computer science: lessons learned from a multiyear program of classroom research,” 
IEEE Transactions on Education, vol. 64, no. 3, pp. 317–326, Aug. 2021, doi: 
https://doi.org/10.1109/te.2021.3049721. 

[16] J. C. Libarkin and J. P. Kurdziel, “Research methodologies in science education: The 
qualitative quantitative debate,” Journal of Geoscience Education, vol. 50, no. 1, pp. 78–86, 
2002. 

[17] M. Paechter and B. Maier, “Online or face-to-face? Students’ experiences and preferences 
in e-learning,” The Internet and Higher Education, vol. 13, no. 4, pp. 292–297, Dec. 2010, doi: 
https://doi.org/10.1016/j.iheduc.2010.09.004. 

[18] A. Bandura, “Social cognitive theory of self-regulation,” Organizational Behavior and 
Human Decision Processes, vol. 50, no. 2, pp. 248–287, Dec. 1991, doi: 
https://doi.org/10.1016/0749-5978(91)90022-l. 

[19] J. S. Eccles et al., “Expectancies, values, and academic behaviors,” in Achievement and 
Achievement Motivation, San Francisco, CA: W. H. Freeman, 1983, pp. 75–146. 

[20] H. W. Marsh, “A multidimensional, hierarchical model of self-concept: Theoretical and 
empirical justification,” Educational Psychology Review, vol. 2, no. 2, pp. 77–172, Jun. 1990, 
doi: https://doi.org/10.1007/bf01322177. 

[21] P. R. Pintrich and E. V. de Groot, “Motivational and self-regulated learning components of 
classroom academic performance.,” Journal of Educational Psychology, vol. 82, no. 1, pp. 33–
40, 1990, doi: https://doi.org/10.1037/0022-0663.82.1.33 

[22] B. J. Zimmerman, “Attaining self-regulation,” in Handbook of Self-Regulation, Academic 
Press, 2000, pp. 13–39. doi: https://doi.org/10.1016/b978-012109890-2/50031-7. 



[23] L. Vygotsky, Mind in Society: The Development of Higher Psychological Processes. 
Cambridge, Mass.; London: Harvard University Press, 1978. 

[24] J. S. Eccles and C. Midgley, “Stage-environment fit: Developmentally appropriate 
classrooms for young adolescents,” Research on Motivation in Education, vol. 3, no. 1, pp. 139–
186, 1989. 

[25] C. R. Ellerbrock and S. M. Kiefer, “The interplay between adolescent needs and secondary 
school structures: Fostering developmentally responsive middle and high school environments 
across the transition,” The High School Journal, vol. 96, no. 3, pp. 170–194, 2013, doi: 
10.1353/hsj.2013.0007. 

[26] R. A. Alturki, “Measuring and Improving Student Performance in an Introductory 
Programming Course,” Informatics in Education, vol. 15, no. 2, pp. 183–204, Nov. 2016, doi: 
https://doi.org/10.15388/infedu.2016.10. 

[27] A. Pears et al., “A survey of literature on the teaching of introductory programming,” ACM 
SIGCSE Bulletin, vol. 39, no. 4, pp. 204–223, Dec. 2007, doi: 10.1145/1345375.1345441. 

[28] C. B. Simmons and L. L. Simmons, “Gaps in the computer science curriculum: an 
exploratory study of industry professionals,” Journal of Computing Sciences in Colleges, vol. 25, 
no. 5, pp. 60–65, 2010. 

[29] A. Begel and B. Simon, “Struggles of new college graduates in their first software 
development job,” in ACM SIGCSE Bulletin, Feb. 2008, vol. 40, no. 1, pp. 226–230. doi: 
10.1145/1352322.1352218. 

[30] D. J. Byrne and J. L. Moore, “A comparison between the recommendations of computing 
curriculum 1991 and the views of software development managers in Ireland,” Computers & 
Education, vol. 28, no. 3, pp. 145–154, Apr. 1997, doi: 10.1016/s0360-1315(97)00006-7. 

[31] D. Hagan, “Employer satisfaction with ICT graduates,” in Proceedings of the Sixth 
Australasian Conference on Computing Education, 2004, vol. 30, pp. 119–123. 

[32] H. Tang, S. Lee, and S. Koh, “Educational gaps as perceived by IS educators: A survey of 
knowledge and skill requirements,” Journal of Computer Information Systems, vol. 41, no. 2, pp. 
76–84, 2001. 

[33] D. Tesch, G. F. Braun, and E. Crable, “An examination of employers’ perceptions and 
expectations of is entry-level personal and interpersonal skills,” Information Systems Education 
Journal, vol. 7, no. 1, 2006. 



[34] T. C. Lethbridge, “A survey of the relevance of computer science and software engineering 
education,” in Proceedings 11th Conference on Software Engineering Education, 1998, pp. 56–
66. 

[35] J. C. Carver and N. A. Kraft, “Evaluating the testing ability of senior level computer science 
students,” in 2011 24th IEEECS Conference on Software Engineering Education and Training 
(CSEE&T), 2011, pp. 169–178. 

[36] K. Goldman et al., “Identifying important and difficult concepts in introductory computing 
courses using a delphi process,” Mar. 2008. doi: https://doi.org/10.1145/1352135.1352226. 

[37] R. Logozar, M. Horvatic, I. Sumiga, and M. Mikac, “Challenges in teaching assembly 
language programming–Desired prerequisites vs. students’ initial knowledge,” in 2022 IEEE 
Global Engineering Education Conference (EDUCON), 2022, pp. 1689–1698. 

[38] N. Pillay, “Learning difficulties experienced by students in a course on formal languages 
and automata theory,” ACM SIGCSE Bulletin, vol. 41, no. 4, p. 48, Jan. 2010, doi: 
10.1145/1709424.1709444. 

[39] T. Beaubouef, “Why computer science students need math,” ACM SIGCSE Bulletin, vol. 34, 
no. 4, p. 57, Dec. 2002, doi: 10.1145/820127.820166. 

[40] T. Prickett, J. Walters, L. Yang, M. Harvey, and T. Crick, “Resilience and effective learning 
in first year undergraduate computer science,” in Proceedings of the 2020 ACM Conference on 
Innovation and Technology in Computer Science Education, 2020, pp. 19–25. 

[41] D. Stoilescu and D. McDougall, “Gender digital divide and challenges in undergraduate 
computer science programs,” Canadian Journal of Education, vol. 34, no. 1, pp. 308–333, 2011. 

[42] Y. Wang, H. Li, Y. Feng, Y. Jiang, and Y. Liu, “Assessment of programming language 
learning based on peer code review model: Implementation and experience report,” Computers 
& Education, vol. 59, no. 2, pp. 412–422, 2012. 

[43] J. Kawash and R. Collier, “Using video game development to engage undergraduate 
students of assembly language programming,” in Proceedings of the 14th Annual ACM SIGITE 
Conference on Information Technology Education, 2013, pp. 71–76. 

[44] J. Kay et al., “Problem-based learning for foundation computer science courses,” Computer 
Science Education, vol. 10, no. 2, pp. 109–128, 2000. 

[45] V. Braun and V. Clarke, “Thematic analysis,” APA Handbook of Research Methods in 
psychology, Vol 2: Research Designs: Quantitative, Qualitative, Neuropsychological, and 
Biological., vol. 2, no. 2, pp. 57–71, 2012, doi: 10.1037/13620-004. 



[46] J. Saldaña, Goodall’s verbal exchange coding: An overview and example, vol. 22, no. 1. 
SAGE Publications Sage CA: Los Angeles, CA, 2016, pp. 36–39. 

[47] C. E. Hill, S. Knox, B. J. Thompson, E. N. Williams, S. A. Hess, and N. Ladany, 
“Consensual qualitative research: An update.,” Journal of Counseling Psychology, vol. 52, no. 2, 
p. 196, 2005. 

[48] J. S. Bruner, The Process of Education. Cambridge, Mass: Harvard University Press, 1960. 

[49] D. DiBiasio, L. Comparini, A. G. Dixon, and W. M. Clark, “A project-based spiral 
curriculum for introductory courses in ChE: III. Evaluation,” Chemical Engineering Education, 
vol. 35, no. 2, pp. 140–146, 2001. 

[50] Lohani, Vinod K, M. L. Wolfe, T. Wildman, K. Mallikarjunan, and J. Connor, 
“Reformulating general engineering and biological systems engineering programs at Virginia 
Tech,” Advances in Engineering Education, vol. 2, no. 4, p. n4, 2011. 

[51] S. Vemuru, S. Khorbotly, and F. Hassan, “A spiral learning approach to hardware 
description languages,” in 2013 IEEE International Symposium on Circuits and Systems 
(ISCAS), 2013, pp. 2759–2762. 

[52] N. Entwistle, “Concepts and conceptual frameworks underpinning the ETL project,” 
University of Edinburgh, Edinburgh, 2003. 

[53] V. MCcune and D. Hounsell, “The development of students? ways of thinking and 
practising in three final-year biology courses,” Higher Education, vol. 49, no. 3, pp. 255–289, 
Apr. 2005, doi: 10.1007/s10734-004-6666-0 

[54] C. W. Brown and E. A. Hardisty, “RegeXeX: An interactive system providing regular 
expression exercises,” ACM SIGCSE Bulletin, vol. 39, no. 1, pp. 445–449, Mar. 2007, doi: 
10.1145/1227504.1227462. 

[55] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan, K. Omar, and J. Su, “Increasing 
engagement in automata theory with JFLAP,” ACM SIGCSE Bulletin, vol. 41, no. 1, pp. 403–
407, Mar. 2009, doi: 10.1145/1539024.1509011. 

[56] A. Stoughton, “Experimenting with formal languages,” in Thirty Sixth SIGCSE Technical 
Symposium on Computer Science Education, 2005, p. 566. 

[57] Vieira, M. Augusto, and N. J. Vieira, “Language emulator, a helpful toolkit in the learning 
process of computer theory,” ACM Sigcse Bulletin, vol. 36, no. 1, pp. 135–139, 2004. 



[58] C. I. Chesñevar, M. P. González, and A. G. Maguitman, “Didactic strategies for promoting 
significant learning in formal languages and automata theory,” ACM SIGCSE Bulletin, vol. 36, 
no. 3, pp. 7–11, Jun. 2004, doi: 10.1145/1026487.1008002. 

[59] J. Kawash, A. Kuipers, L. Manzara, and R. Collier, “Undergraduate assembly language 
instruction sweetened with the raspberry pi,” in Proceedings of the 47th ACM Technical 
Symposium on Computing Science Education, 2016, pp. 498–503.a 

[60] A. Tafliovich, J. Campbell, and A. Petersen, “A student perspective on prior experience in 
CS1,” in Proceeding of the 44th ACM Technical Symposium on Computer Science Education, 
2013, pp. 239–244 

[61] E. D. Bunderson and M. E. Christensen, “An analysis of retention problems for female 
students in university computer science programs,” Journal of Research on Computing in 
Education, vol. 28, no. 1, pp. 1–18, 1995. 

[62] C. Mooney, B. A. Becker, L. Salmon, and E. Mangina, “Computer science identity and 
sense of belonging: a case study in Ireland,” in Proceedings of the 1st International Workshop on 
Gender Equality in Software Engineering, 2018, pp. 1–4. 

 

 

 

 

 

 

 

 

 

 



APPENDIX I. QUALITATIVE FINDINGS: SUGGESTED CHANGES IN THE CS COURSES AND/OR COURSE SEQUENCES 

Category Sub-category Code Example Sub-code 

Program: 
suggesting a 
program-
level change 
(n = 115) 
 
 
 

Suggestions on 
course 
requirements 
(n = 69) 
 
 

Suggestions on 
course 
requirements (n = 
69) 

“I think calculus shouldn’t be 
required to take CIS courses.” 

remove CS course: suggesting that a CS course should be 
removed a CS course (n = 41) 
Sub-sub-codes: 

● remove, CS[Automata Theory] (n = 19)  
● remove, CS[Machine Organization and Assembly 

Language] (n = 13) 
● remove, CS[Introduction to Systems Programming] 

(n = 2) 
● remove, same [Data Structures and Introduction to 

Algorithms] (n = 1) 
● remove, CS[Computers, Ethics, and Society] (n = 1) 
● remove, CS[Logic and Programming] (n = 1) 
● remove, CS [Data Structures] for stats for stats (n = 

1) 
● remove, CS[Data Structures] for stats (n = 1) 
● remove, CS[Introduction to Systems Programming] 

for stats (n = 1) 
● remove, CS[Introduction to CS II] (n = 1) 

remove, MATH course: suggesting that a mathematics 
course should be removed (n = 6) 
Sub-sub-codes: 

● remove, MATH[Statistical Methods] (n = 2) 
● remove, MATH[Analytic Geometry & Calculus B/C] 

(n = 1) 
● remove, MATH[Discrete Mathematics] (n = 1) 
● remove, MATH, general (n = 1) 
● remove, MATH, calculus (n = 1) 



remove, prereq restrictions:  suggesting that a prerequisite 
course should be removed (n = 1) 

remove, lab science: suggesting that a lab science course 
should be removed from requirement (n = 4) 

prereq: 
suggesting 
prerequisite for a 
course (n = 9) 
  
  
  
  
  
  
  

“Not have CS[Introduction to CS 
II] has a prereq[uisite] for CS 
[Data Structure] can make the 
challenge of CS [Data Structure] 
even bigger for students who 
come in without OOP [Object-
Oriented Programming] 
experience and requires a 
significant amount of time in CS 
[Data Structure] to review basic 
OOP ideas.” 

prereq, course: suggesting that a specific course need a 
prerequisite (n = 7) 
Sub-sub-codes: 

● prereq, for CS[Automata Theory] (n = 1) 
● prereq, for CS[Data Structures] (n = 1) 
● prereq, for CS[Introduction to Systems 

Programming] (n = 1) 
● prereq, CS[Introduction to CS II] for CS[Data 

Structures] (n = 1) 
● prereq, CS[Introduction to CS II] for CS[Introduction 

to Systems Programming] (n = 1) 
● prereq, CS[Introduction to CS II] & CS[Introduction 

to Systems Programming] for CS[Data Structures] (n 
= 1) 

● prereq, between CS[Introduction to Systems 
Programming] and CS[Data Structures] (n = 1) 

prereq, general: suggesting that a course need a prerequisite 
without specifying a specific course name (n = 2) 

make req: 
suggesting that a 
course should be 
required for the 
program (n = 6) 

“I don't understand how some 
courses are optional (i.e., linear 
algebra) but later on, you need 
linear algebra for several classes.” 

make req, CS course: suggesting that a CS course should be 
required for the program (n = 3) 
Sub-sub-codes: 

● make req, CS[Introduction to Human-Computer 
Interaction] (n = 1) 



● make req, CS[Database Systems] (n = 1) 
● make req, CS[Introduction to CS2] for CE (n = 1) 

make req, MATH course: suggesting that a MATH course 
should be required for the program (n = 2) 
Sub-sub-codes: 

● make req, MATH[Statistical Methods] (n = 1) 
● make req, MATH[Linear Algebra] (n = 1) 

make req, CS content: suggesting that a CS content should 
be required for the program (n = 1) 
Sub-sub-codes: 

● make req, CS content network (n = 1) 

sequence change, 
suggesting a 
change in course 
sequence (n = 16) 

“I think that data structures should 
be an earlier course, most of the 
software engineering internship 
interviews that I have are concepts 
from data structures…” 

sequence change, upper division course: suggesting a 
change in the sequence within upper division courses 
Sub-sub-codes: 

● sequence change, CS [Senior Design] (n = 1) 
● sequence change, CS[Operating Systems] after 

CS[Parallel Programming] (n = 1) 
● sequence change, CS[Computers, Ethics, and 

Society] to first year (n = 1) 
● sequence change, CS[Logic and Programming] 

before CS[Automata Theory] (n = 1) 

sequence change, lower division course: suggesting a 
change in the sequence within (n = 5) 
Sub-sub-codes: 

● sequence change, CS[Data Structures] earlier (n = 2) 
● sequence change, CS[Data Structures] (n = 1) 
● sequence change, CS[Introductory CS for Engineers] 

with CS[Introduction to Systems Programming] and 
CS[Introduction to CS II] (n = 1) 



● sequence change, CS[Introductory CS for Engineers] 
should not be before CS[Introduction to Systems 
Programming] (n = 1) 

sequence change, across division: suggesting a change in the 
sequence within/between upper and lower division courses 
(n = 2) 
Sub-sub-codes: 

● sequence change, CS[Logic in CS] and 
MATH[Discrete Mathematics] concurrently (n = 1) 

● sequence change, CS[Data Structures] and 
CS[Introduction to Algorithms] earlier (n = 1) 

sequence change, CS content: suggesting a change in the 
sequence of a CS content (n = 4) 
Sub-sub-codes: 

● sequence change, object-oriented programming 
earlier in CS[Introduction to CS I] (n = 2) 

● sequence change, networks earlier (n = 1) 
● sequence change, command earlier (n = 1) 

sequence, lang: 
suggesting a 
change in the 
sequence of 
languages taught 
in the program (n 
= 5) 

“Learning Java should actually go 
first over learning python. Java is 
a more readable language, which 
makes it easier to understand…” 

sequence, lang, put Java before Python (n = 2) 

sequence, lang, do not start with Dr. Racket (n = 2) 

sequence, lang, do not start with python (n = 1) 

-- 
  
  

industry relevant 
design: 
suggesting that 
courses or content 

“I think some courses teach 
material that may be slightly 
outdated or may be different from 

industry relevant design, less theories: suggesting reducing 
the number of theoretical courses (n = 6) 

industry relevant design, general: suggesting that courses or 
content of the program should be more relevant to the 



of the program 
should be more 
relevant to the 
industry demands 
(n = 13)  
  
  

what people currently work with 
(in the workforce).” 

industry demands, in general without providing any details 
(n = 6) 

industry relevant design, updated materials: suggesting that 
program materials should be updated to be more relevant to 
current trends (n = 1) 

-- 
  
  

available: 
suggesting that 
the capacity of a 
certain 
required/prerequi
site course should 
be considered 
when the program 
is planned (n = 
10) 

“Currently, [Data Structure] is a 
huge gatekeeper to the rest of the 
Comp. Sci. curriculum. Caused a 
lot of problems in scheduling." 

available, course: suggesting that the capacity of a certain 
course should be increased by mentioning the course name 
(n = 2) 
Sub-sub-codes: 

● available, course, CS[Introduction to Software 
Engineering] (n = 1) 

● available, course, CS[Data Structures] (n = 1) 

Instruction: 
suggesting 
instructional
-level 
changes (n = 
64) 
  
 

Knowledge: 
suggesting a 
change in how 
instructors 
understand 
students’ 
learning and 
knowledge (n = 
36) 

assume know: 
suggesting that 
instructors should 
estimate students’ 
knowledge better 
(n = 18) 
  

“I feel like sometimes professors 
forget some people have no 
experience with coding at all. So, 
when professors talk fast about 
some topics, I tend to get lost.” 

assume know, overestimate: suggesting that instructors 
should avoid overestimating students’ knowledge (n = 13) 

assume know, underestimate: suggesting that instructors 
should avoid underestimating students’ knowledge (n = 5) 

overview info: 
suggesting that 
more general 
information about 
the course should 
be provided to 

“More direct telling you what you 
are supposed to be learning about 
at specific points in the course.” 

 



students, such as 
the content 
covered in the 
course, course 
syllabus, and 
other suggested 
materials/content 
(n = 7) 

workload: 
suggesting more 
appropriate 
amount of 
workload 
including 
assignments, 
classwork, and 
projects (n = 6) 

“...students are given massive 
projects and are basically told to 
just figure it out… most of which 
took ridiculous amounts of hours 
to finish…” 

 

pace: suggesting 
that the pace of 
teaching should 
be slowed down 
(n = 5) 

“They go at such a fast pace 
sometimes. Need to spend more 
time with fundamentals and 
basics.” 

pace, general: suggesting that the pace of teaching should be 
slowed down in general without specifying the course name 
(n = 4) 

pace, course: suggesting that the pace of teaching should be 
slowed down in general by specifying the course name (n = 
1) 
Sub-sub-code: 

● pace, course, CS[Data Structures] (n = 1) 

Academic 
Support (n = 
28) 

better teaching: 
suggesting that 
more effective 

“...Past the Python course, you're 
launched into Java and C. Both 
very relevant and overall good to 

better teaching, general: suggesting that more effective 
teaching approaches should be used in general without 
specifying the course name (n = 4) 



  
  
  
  
  
  
  
  
  
  
  
  
  

teaching 
approaches 
should be used (n 
= 14) 

learn. Except you have to learn 
both at the same time with very 
little help and actual teaching…” 

better teaching, engagement: suggesting that more effective 
engagement tools or teaching approaches should be used (n 
= 4) 

better teaching, course: suggesting that more effective 
teaching approaches should be used in a specific course (n = 
4) 
Sub-sub-codes: 

● better teaching, course, CS[Computers, Ethics, and 
Society] (n = 1) 

● better teaching, course, CS[Introduction to 
Algorithms] (n = 1) 

● better teaching, course, CS[Introduction to CS II] (n 
= 1) 

● better teaching, course, CS[Principles of 
Computing], [CS with Web Applications], 
[Introductory CS for Engineers], [Introduction to CS 
I] [a different] campus (n = 1) 

better teaching, consistent quality: suggesting that there 
should be consistent quality across different instructors 
teaching the same course (n = 2) 

assist: suggesting 
that more 
assistance should 
be provided to 
students in their 
study (n = 14) 

“I would definitely suggest more 
office hours and even labs for 
people to go to for help, especially 
during the first week of school so 
people don’t get behind. I went to 
my lab the first week and the TA 
did not show up.” 

assist, practice: suggesting that more assistance should be 
provided to students through giving more practices (n = 6) 
Sub-sub-codes: 

● assist, practice, general (n = 4) 
● assist, practice, python after CS[General CS for 

Engineers] and CS[Introduction to CS] after and 108 
(n = 1) 

● assist, practice, coding (n = 1) 



assist, meeting, advisor: suggesting that more assistance 
should be provided to students through meeting with 
advisors (n = 5) 

assist, teaching assistant: suggesting that more assistance 
should be provided to students through meeting with 
teaching assistant (n = 1) 

assist, meeting, instructor: suggesting that more assistance 
should be provided to students through meeting with 
instructors at office hours (n = 1) 

assist, disability support service: suggesting that more 
assistance should be provided to students through providing 
better disability support service (n = 1) 

Environmen
t: suggesting 
environment
al-level 
changes (n = 
10) 
  

--  
  
  
  
  
  
  
  

feel, negative: 
feeling towards 
the program, such 
as feeling stressed 
out, intimidated, 
or isolated (n = 
6)  

“I am not a strong coder and I feel 
very intimidated by many of the 
students I've worked with...” 

feel, negative, stress and intimidated (n = 5) 

feel, negative, isolated (n = 1) 

exclusion: feeling 
excluded due to 
their gender or 
ethnicity (n = 4) 
  

“There is a heavy amount of 
judgment and discouraging 
behaviors amongst males against 
females in [CS], that makes the 
learning experience/environment 
uncomfortable.” 

exclusion, gender (n = 3) 

exclusion, race (n = 1) 

Course: 
suggesting a 
course-level 

Course 
Content: 
suggesting a 

include: 
suggesting that a 
new topic should 

“I think there should be a web 
development concentration 
offered to CIS students.” 

include, development: suggesting that a course related to 
development should be added (n = 7) 
Sub-sub-codes: 



change (n = 
52) 
 

change in the 
content within 
courses (n = 
46) 

be added to the 
course (n = 20) 

● include, web development (n = 5) 
● include, app development (n = 1) 
● include, development, general (n = 1) 

include, matlab: suggesting MATLAB should be added in 
different course aspects (n = 2) 

● include, MATLAB for python (n = 1) 
● include, MATLAB for engineering (n = 1) 

include, A.I, robotics (n = 2) 

include, better tech elective (n = 1) 

include, data structure (n = 1) 

include, functional programming (n = 2) 

include, more class variety (n = 2) 

include, math for CS (n = 1) 

include, terminology in CS[Introductory CS for Engineers] 
(n = 1) 

improve: 
suggesting an 
improvement to a 
course (n = 11) 
  
  
  

“Getting feedback from the 
industry and basing courses on 
that. Not learning useless things 
which will never be used in the 
real-world. Also having interview 
prep sessions since that is a big 

improve, real world: suggesting an improvement to a course 
by adding content that are more practical to the real world (n 
= 6) 
Sub-sub-codes: 

● improve, real world, general (n = 3) 
● improve, real world, algorithms (n = 2) 
● improve, real world, live coding (n = 1) 



part of the trivia part for getting 
jobs.” 

  improve, course: suggesting an improvement to a course or 
a topic in a course (n = 5) 
Sub-sub-codes: 

● improve, course, front end (n = 1) 
● improve, course, CS[Data Structures] (n = 1) 
● improve, course, CS[Introduction to CS II] (n = 1) 
● improve, course, CS[Introductory CS for Engineers] 

(n = 1) 

  improve, balance CPEG & CS: suggesting an improvement 
to course content by providing balanced content from CS 
and engineering (n = 1) 

lang: suggesting a 
change to the 
number of 
languages taught 
in the program by 
either reducing or 
adding it (n = 9) 

“I'm not too sure if I just haven't 
gotten to that level yet, but I think 
that further learning of certain 
coding languages might help 
rather than learning more and 
more different languages.” 

lang-too many: suggesting that the number of programming 
languages taught should be reduced (n = 6) 

  lang-variety: suggesting that there should be a wider variety 
of languages taught (n = 3) 

connect: 
suggesting more 
connections of 
content between 
courses (n = 6) 

“The courses rarely, if at all, build 
on top of existing topics. They are 
always teaching us something new 
which makes it difficult to be 
good at a particular thing.” 

-- 



-- 
  
  

assess: suggesting 
a change related 
to how their 
course 
performances are 
assessed (n = 6) 

“I am also not a great test-taker, 
so I enjoy computer courses that 
have no exams and just do 
projects and assignments.” 

assess, no/less test, general (n = 3) 

assess, no group work (n = 2) 

assess, no/less test, no handwritten test (n = 1) 

 


