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Background 

One of the key challenges of Engineering Education is developing students’ ability to navigate 

and solve moderately- or ill-structured problems with multiple solution paths. Existing 

theoretical and conceptual frameworks can provide a basis for understanding this challenge. The 

framework of self-regulated learning can be applied to problem solving. In self-regulated 

learning, the problem solver (or learner) first plans, sets goals, and lays out strategies. Then, they 

implement these strategies. Finally, the problem solver reflects on their performance [1] [2]. For 

ill-structured problems where the solution path is not immediately obvious, the systematic 

approach of self-regulated learning can help students navigate the possible difficulties and dead 

ends. If a solution method does not work out, the problem solver can reflect on this and try a 

different approach.   

The Model of Domain Learning is another conceptual framework that can be applied to problem 

solving. The goal is to understand how novices build expertise and become experts [3] [4]. In 

this framework, the learner progress through three stages. In the first stage, Acclimation, the 

learner has little knowledge of a field, and the knowledge is unstructured. For example, a novice 

problem solver may use the first approach that comes to mind when solving a problem, never 

changing approach if their attempt fails. In the second stage, Competence, the learner has begun 

to understand the key principles of the field and can accomplish basic tasks easily. For example, 

an intermediate problem solver may attempt to solve a problem using a standard approach, get 

stuck, and then switch to a simpler approach to obtain an answer. In the third stage, Proficiency, 

the learner has accumulated large stores of organized knowledge that they can use to efficiently 

accomplish a wide variety of tasks. For example, an expert problem solver may use a back-of-

the-envelope calculation to first estimate the solution to a complex problem before investing time 

in a more precise method. 

Problems range from closed (well-defined) to open (ill-defined) along a spectrum [5]. We are 

interested in problems that have a well-defined solution but multiple paths to reach that solution. 

These types of problems are valuable because the experience learned by solving them can be 

transferred to new situations [6]. The existence of a well-defined solution makes the analysis of 

problem solving activity potentially tractable compared to problems with no well-defined 

solution, yet the possibility of multiple methods gives ample opportunities to find optimal 

pathways, unlike simple textbook exercises with one solution path.  

Previous works have analyzed the role of estimation in engineering education. When solving 

open-ended problems, the problem solver is often faced with a range of approaches. On one end 



of the range are low complexity methods, such as simple estimation. These methods can be 

implemented in a short amount of time and usually result in an approximate answer. On the other 

end of the range are high complexity methods, such as detailed analysis. These methods require 

much more time to implement, but can result in a very accurate or exact answer if implemented 

correctly. Previous work focused on assessing student’s ability to perform simple estimation. It 

was found that students often had difficulty making basic estimates [7]. Furthermore, 

engineering classes overwhelmingly emphasized detailed analysis over estimation [8]. It was 

observed that students were unwilling to make rough estimates before and after performing 

Finite Element Analysis, often trusting the computer simulations without reservation [9]. 

Furthermore, these deficiencies in estimation ability were observed from undergraduate fourth-

year students [7] [9].  

Given the lack of emphasis on estimation in the curriculum and the observed shortcomings in 

students' estimation ability, we sought to answer the question: How would a student select from a 

range of low complexity to high complexity methods if given the freedom to choose, and how 

would this choice affect their problem solving outcome? In this paper, we address this question 

in two ways. First, we conducted an experiment with student participants to give an illustration 

of the range of possible solution methods and problem solving outcomes. Second, we formulated 

a model to capture the underlying behaviors of problem solving with multiple solution methods. 

Incorporating the results from the experiment and model, we then give recommendations for 

problem solving instruction. 

 

Method 

Participants were recruited for an experiment. The subject population consisted of 72 

undergraduates and graduate students of the authors' institution, an engineering-focused private 

university on the U.S. East Coast. The objective of recruitment was to maximize the number of 

participants, so participants were not limited to students in one department; the diversity in 

students' disciplines may potentially result in a larger variety of solution methods.  

Multiple recruitment methods were used. Subjects were recruited from the enrollees of 

Introduction to Engineering Computation (a second-year course in Mechanical Engineering), 

through announcements made to student organizations, and from flyers posted in the Author's 

institution. Additionally, participants were allowed to refer fellow students via snowball 

sampling, and some subjects were recruited informally. 

The participants in this study were given the Volume Problem (see Figure 1), which consisted of 

two sections. The first section asked students to “How would you start solving this problem?” 

and was five minutes long. The second section asked students to “Solve as much of the problem 

as you can” and was ten minutes long. The participants submitted their answers on paper answer 

sheets. Every two minutes, the participant’s pen color was switched so that work can be 

identified within time intervals. Two minute intervals were found to be optimal for data 

gathering. A shorter pen switching interval would incur a large distraction overhead, while a 

longer pen switching interval would give less precise data. Additionally, the participant was able 



to access a computer connected to the internet. There were no restrictions on what tools they 

could use, but they could not consult other people.  

The problem solving task was to “estimate the volume of the component.” This task was chosen 

such that participants are likely to consider both low complexity and high complexity methods. 

While it is possible to obtain an exact solution, most students are unlikely to do so within the 

time constraints. 

 



 

Figure 1. Top: Volume Problem. Students were given five minutes to brainstorm how to start this 

problem. Then they were given ten minutes to implement their solution. The results from the ten-

minute section were analyzed. Bottom: example of student work from the ten-minute section. 



Experimental Results 

For the Volume Problem, the results of the ten-minute section were analyzed. Any answer within 

10% of exact was considered correct. 26 of 72 (36%) participants solved the problem correctly.  

The participants’ results were first analyzed by school year. Students of different years 

performed somewhat similarly (See Table 1). The second year students did not perform as well 

as average, but the result was within the margin of error. Overall, a strong trend was not 

observed. 

 

School year Number correct Total number Fraction correct (with 

95% confidence intervals) 

First year 9 19 0.47 [0.27, 0.68] 

Second year 2 11 0.18 [0.05, 0.48] 

Third year 6 15 0.40 [0.20, 0.64] 

Fourth year 4 11 0.36 [0.15, 0.64] 

Graduate student 5 16 0.31 [0.14, 0.56] 

    

Overall 26 72 0.36 [0.26, 0.48] 

Table 1. Volume Problem results by school year. Clear differences between students in different 

years were not observed. 

 

Participants' solution methods were placed into six categories: Visual Estimation, Geometric 

Approximation, CAD, Monte Carlo, Integral, and Other. With the exception of “Other”, these 

categories are in approximate order of implementation complexity from simplest to most 

complex (see Table 2). They are also in approximate order of accuracy from least precise to most 

precise. It was found that a large fraction of students used Geometric Approximation (23 of 72), 

a method of intermediate complexity, and Integral (28 of 72), a method of higher complexity. 

Less common approaches included Visual Estimation (6 of 72), CAD (5 of 72), and Monte Carlo 

(4 of 72). 

From the different pen colors of students’ work, we extracted the amount of time they spent on 

each solution method to within one minute. The solve time depended on which method was used. 

On average, Visual Estimation was associated with the lowest solve time. Geometric 

Approximation, CAD, and Monte Carlo were associated with moderate solve time, while 

Integral was associated with the longest solve time. The fraction of students who correctly solved 

the problem also depended on which method was used. Integration was associated with the 

lowest fraction correct. Geometric Approximation and Monte Carlo were associated with a 

moderate fraction correct, while Visual Estimation and CAD were associated with the highest 

fraction correct. In general, shorter methods were associated with a higher fraction correct. 

Students who correctly solved the problem using a given method tended to use less time on that 

method than students who did not correctly solve the problem. It was observed that students who 

did not solve the problem correctly tended to work until the time limit expired, while students 



who solved the problem correctly sometimes finished their work before the time limit was 

reached.  

 

Method Number of 

students using 

method 

Fraction correct (with 

95% confidence 

intervals) 

Solve time 

(min) 

Solve time 

(correct 

solution only) 

Visual 

Estimation 

6 0.83 [0.44, 0.97] 3.83 3.40 

Geometric 

Approximation 

23 0.39 [0.22, 0.59] 7.78 6.33 

CAD 5 0.80 [0.38, 0.96] 7.80 7.25 

Monte Carlo  4 0.50 [0.15, 0.85] 8.25 6.50 

Integral 28 0.21 [0.10, 0.40] 9.53 9.00 

Table 2. Accuracy and corresponding solve times. Fraction correct is the fraction of participants 

who obtained a correct solution with a given method. Solve time is the time spent on the method. 

 

Of the 29 participants who obtained an answer, 26 (90%) obtained the correct answer. Of the 46 

students who did not obtain the correct answer, 43 (93%) did not obtain an answer at all. The 

majority of incorrect solutions were unsuccessful because the problem solver didn’t finish, not 

because they finished but obtained the incorrect answer.  

Additionally, we analyzed the number of methods used by the participants (See Table 3). It was 

found that few students used two or more solution methods (8) compared to the number of 

students who used one method (64). Of seven participants who switched methods exactly once, 

four obtained correct answers, an accuracy of 57% compared to the overall accuracy of 36%. 

Additionally, one participant switched methods twice and obtained the correct answer. Even 

though this data is not statistically significant, it may suggest the existence of an optimal number 

of solution methods for maximizing the probability of correctly solving this problem. 

 

Number methods Number correct Total number Fraction correct (with 95% 

confidence intervals) 

1 21 64 0.33 [0.23, 0.45] 

2 4 7 0.57 [0.25, 0.84] 

3 1 1 1.00 [0.21, 1.00] 

Table 3. Number of methods used vs. solution outcome. Note that a higher fraction correct was 

associated with more solution methods. 

 

We were able to recruit N = 72 participants for this study. This was enough to obtain a 

qualitative understanding of the relationship between problem solving performance and school 

year, type of method used, and number of methods used. However, it was uncertain whether 



further recruitment will yield additional insights for the effort required. To better investigate the 

underlying characteristics of problem solving with multiple methods, we formulate a 

mathematical model.  

 

Modeling 

A model was formulated to capture the essential behaviors of problem solvers with multiple 

methods. The model has the following basic elements: 

 A time limit 𝑡𝑓, representing how much time the student has to solve the problem. This is 

a positive integer (no fractional quantities are allowed). 

 Solve times 𝑡𝑖, representing how long it takes to solve the problem with method 𝑖 =

 1, 2, 3, … , 𝑛. These solve times are also positive integers. A problem solver solves the 

problem with method 𝑖 if they stay 𝑡𝑖 consecutive timesteps on method 𝑖.  

 Starting probabilities 0 ≤ 𝛽𝑖 ≤ 1, representing the probability that the initial solution 

method chosen is method 𝑖. Note that the sum of all starting probabilities is one, i.e.  

𝛽1 + 𝛽2 + ⋯ + 𝛽𝑛 = 1.  

 A switching probability 0 ≤ 𝛼 ≤ 1, representing the probability that the problem solver 

switches methods at each time step. The probability the problem solver does not switch 

methods (at each timestep) is 1 − 𝛼. 

 A total solve probability 𝑃𝑠𝑜𝑙𝑣𝑒, representing the total probability the problem is solved.    

 

The model makes the following assumptions about the problem solving process: 

 The problem has a well-defined solution, and can be solved with more than one solution 

method. We do not account for problems without a well-defined solution, or problems 

with only one solution method. 

 The time limit is known to the problem solver, so they can make decisions about how to 

allocate their time. This is consistent with the experiment. 

 Once the student finishes a solution method, they have solved the problem. Within this 

work, we do not consider the case where the student finished the solution but made a 

mistake. (In our experiment, students who were unsuccessful tended run out of time 

instead of making a mistake.) 

 If the student switches methods, they lose all progress on their current method. 

 If the problem solver switches methods, and there is more than one other method 

available, the probability of switching to each of the other methods will be equal. For 

example, if there are 𝑛 total methods, the probability of switching from any given method 

to another at each timestep will be 
𝛼

𝑛−1
. 

The following example shows how the total solve probability 𝑃𝑠𝑜𝑙𝑣𝑒 is calculated as function of 

switching probability 𝛼. 



Consider a problem with time limit 𝑡𝑓 = 4 and two solution methods with solve times 𝑡1 = 2 and 

𝑡2 = 6. Let the probability of starting on each method be 
1

2
. Because the problem solver can work 

on either method 1 or method 2 on each of the four time steps, the following 24 = 16 sequences 

of methods are possible: 

1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 

2222 

Let 𝐵 be the number of method transitions in the sequence (e.g. going from method 1 to 2 or vice 

versa). For each sequence, the probability of the sequence occurring is the product of 
1

2
 (the 

probability of starting on the either method), 𝛼𝐵 (associated with the 𝐵 method transitions), and 

(1 − 𝛼)𝑡𝑓−1−𝐵 (associated with the 𝑡𝑓 − 1 − 𝐵 instances of staying on the same method): 

 

𝑃𝑆 =  
1

2
𝛼𝐵(1 − 𝛼)𝑡𝑓−1−𝐵 

 

A sequence solves the problem if there are 𝑡1 = 2 consecutive ones in the sequence. Method 2 

cannot be used to solve the problem because the solve time is greater than the time limit. We can 

then summarize sequence probabilities and whether the sequence solves the problem:    

Sequence Solves problem? Probability of the sequence 

1111 Yes (1 − 𝛼)3/2 

1112 Yes 𝛼(1 − 𝛼)2/2 

1121 Yes 𝛼2(1 − 𝛼)/2 

1122 Yes 𝛼(1 − 𝛼)2/2 

1211 Yes 𝛼2(1 − 𝛼)/2 

1212 No 𝛼3/2 

1221 No 𝛼2(1 − 𝛼)/2 

1222 No 𝛼(1 − 𝛼)2/2 

2111 Yes 𝛼(1 − 𝛼)2/2 

2112 Yes 𝛼2(1 − 𝛼)/2 

2121 No 𝛼3/2 

2122 No 𝛼2(1 − 𝛼)/2 

2211 Yes 𝛼(1 − 𝛼)2/2 

2212 No 𝛼2(1 − 𝛼)/2 

2221 No 𝛼(1 − 𝛼)2/2 

2222 No (1 − 𝛼)3/2 

 

For all sequences that solve the problem, we add up their probabilities to obtain the total solve 

probability. We ignore sequences that don’t solve the problem. Thus 



𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) =  
1

2
(1 − 𝛼)3 + 4 ∙

1

2
𝛼(1 − 𝛼)2 + 3 ∙

1

2
𝛼2(1 − 𝛼) 

=
1

2
(1 + 𝛼 − 2𝛼2) 

Checking the graph of 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) (see Figure 2), we see that the maximum solve probability 

occurs at where 𝑃𝑠𝑜𝑙𝑣𝑒
′ (𝛼) = 0, or  𝛼 =

1

4
, 𝑃𝑠𝑜𝑙𝑣𝑒 =

9

16
. 

 

Figure 2. Graph of the solve probability 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼). Note that at 𝛼 = 0, 𝑃𝑠𝑜𝑙𝑣𝑒 is 
1

2
. This 

corresponds to the no-switch case, where the problem solver stays on the first method chosen. As 

𝛼 is increased, 𝑃𝑠𝑜𝑙𝑣𝑒 reaches a maximum of 
9

16
 at 𝛼 =

1

4
. Further increasing 𝛼 will lead to a 

decrease in 𝑃𝑠𝑜𝑙𝑣𝑒 until the solve probability reaches zero at 𝛼 = 1.  

 

For the case with two solution methods, it was found that whenever 𝑡2 > 𝑡𝑓 and 𝑡1 ≤  ⌊
𝑡𝑓

2
⌋ (where 

the ⌊∙⌋ notation means to round down), there exists a maximum for 𝑃𝑠𝑜𝑙𝑣𝑒 at a nonzero switching 

probability α > 0. That is, switching methods can help if the solve time of the shorter method is 

sufficiently low (see Figure 3). This fact can be proved mathematically, but the proof is outside 

the scope of this paper. 



 

Figure 3. Plot of 𝑃𝑠𝑜𝑙𝑣𝑒 as a function of 𝛼. Here, 𝑡𝑓 = 10 and 𝑡2 > 𝑡𝑓. Whenever 𝑡1 ≤ 5, the 

maximum for 𝑃𝑠𝑜𝑙𝑣𝑒 occurs at a nonzero 𝛼. For 𝑡1 > 5, the 𝑃𝑠𝑜𝑙𝑣𝑒 maximum occurs at 𝛼 = 0. 

 

Additionally, the effect of the starting probability can be analyzed. In Figure 3, the starting 

probabilities were set to a default 𝛽1 = 𝛽2 =
1

2
. In Figure 4, the starting probability on the shorter 

method 𝛽1 was varied. It was found that the higher the value of 𝛽1, the higher the solve 

probability 𝑃𝑠𝑜𝑙𝑣𝑒 for all values of 𝛼. The greatest improvement in 𝑃𝑠𝑜𝑙𝑣𝑒 occurred for small 

values of α. Furthermore, at higher values of 𝛽1, there is less need to switch methods, since the 

problem solver is more likely to start on the shorter (more desirable) method. 



 

Figure 4. Plot of 𝑃𝑠𝑜𝑙𝑣𝑒 as a function of 𝛼 with starting probability 𝛽1 varied. Here, 𝑡1 = 5, 𝑡𝑓 =

10, and 𝑡2 > 𝑡𝑓  Note that larger values of 𝛽1 were associated with higher solve probability 

𝑃𝑠𝑜𝑙𝑣𝑒 for all 𝛼. At the same time, the maximum 𝑃𝑠𝑜𝑙𝑣𝑒 is achieved with no switching for large 

values of 𝛽1 >  0.5. Switching maximizes 𝑃𝑠𝑜𝑙𝑣𝑒 for 𝛽1 ≤ 0.5. 

 

Discussion 

The model predictions and experimental data can be compared. In the experiment, there were a 

total of five participants who obtained the correct answer and more than one method. These five 

participants used various methods, but they obtained the correct answer only through two 

methods:  Visual Estimation and Geometric Approximation. 

Three of these five participants reached the correct answer through Visual Estimation; their 

average solve time was 4 minutes, compared to 3.4 minutes for all students who obtained the 

correct answers with Visual Estimation. The other two obtained the correct answer through 

Geometric Approximation; their average solve time was 2 minutes, compared to 6.3 minutes for 

all students who obtained correct answers with Geometric Approximation (see Table 1). These 

five students had an average solve time of 3.2 minutes, but the average solve time of all students 

who obtained the correct answer (through any method) was 6.5 minutes, approximately two 

times greater. This difference in solve times may imply that students who switched methods may 

be more adept at using problem solving strategy; they were not necessarily better at using a 

specific tool (such as Visual Estimation or Geometric Approximation). Instead, they were able to 



reduce their overall solve time by switching to a simpler method. In fact, all five of these 

participants spent five minutes or less on the method they used to successfully solve the problem. 

Given that the time limit is 10 minutes, this provides some corroboration for a key prediction of 

the model: that it would be beneficial to switch if there were methods with solve time of 
𝑡𝑓

2
 or 

less. 

The experimental results and model predictions allow us to formulate the following 

recommendations for improving problem solving outcomes (see Figure 5). 

 

 

 

 

 

 

 

 

 

Figure 5. Tools and strategies to improve problem solving outcome with multiple solution 

method. 

 

The first recommendation is to have students learn low solve time methods. One way to 

implement this is to instruct students to use estimation or approximation techniques in addition to 

traditional tools used for detailed analysis, thereby adding low complexity methods to students' 

toolbox.  The experimental results suggest that students who use lower complexity methods are 

more likely to correctly solve the problem within the time limit. Additionally, the model suggests 

that adding low complexity methods will give students a chance to improve their 𝑃𝑠𝑜𝑙𝑣𝑒 by 

switching. 

Once the student has low solve time methods in their toolbox, the next recommendation is to 

switch methods with the right frequency, that is, selecting an optimal α. To implement this, 

students can be taught that it is okay to switch their approach, if they see their current method as 

taking too long or unlikely to succeed. This strategy works by allowing the student to find a 

method that they are able to complete within the time limit, and can only improve 𝑃𝑠𝑜𝑙𝑣𝑒 if the 

student knows a sufficient amount of low solve time methods. By default, the model switches 

from method to method at random, without regard to method choice. Even so, it is still possible 

to improve 𝑃𝑠𝑜𝑙𝑣𝑒 if there are enough low complexity (low solve time) methods. This strategy is 

Teach one or more low 

solve time methods, e.g., 

estimation  

Allow problem solver to switch 

methods with optimal 

switching tendency α  

Improve starting method 

choice; bias towards low solve 

time methods  

Tools  

Strategies 



consistent with experimental results, which suggest that students who switch methods are more 

likely to correctly solve the problem. 

The ability to use low solve time methods allows for another recommendation: start on less 

complex, lower solve time methods. It is a strategy consistent with how experts start problems, 

according to previous work by Li and Hosoi [10]. This strategy can be implemented by 

emphasizing to the student that they should first try a simple approach, and only proceed to a 

more detailed method if more accuracy is needed. This strategy requires the student to already 

know low solve time methods. Additionally, the model suggests that a better starting method 

improves 𝑃𝑠𝑜𝑙𝑣𝑒 regardless of whether the student switches methods or not. It has the biggest 

effect at low α; the better the starting method, the less need there is to switch methods. 

These three recommendations should be deployed in a certain order for maximum effect (see 

Figure 5). Teaching low solve time methods should be implemented first. Doing so will give the 

problem solver a basis for deciding when to switch methods while problem solving, and which 

methods should be used first. 

 

Conclusion 

The experimental results show that students chose a variety of methods when solving a problem 

with multiple solution paths. Different method choices were associated with different outcomes; 

low complexity methods were associated with better problem solving outcomes than high 

complexity methods (Table 2). Additionally, most students who failed to solve the problem did 

so because they not finish their solution, not because they made a mistake. It was also found that 

most students only used one solution method. However, the students who used more than one 

solution method tended to have a higher rate of success than average, though the effect is not 

statistically significant (Table 3). 

Building off these experimental results, the model shows that the existence of sufficiently short, 

low complexity methods (with solve times of approximately half the time limit or less) gives the 

problem solver an opportunity to improve their outcome by either switching methods. A lower 

solve time was associated with higher maximum solve probability and a higher optimal 

switching tendency α. Furthermore, the problem solver can improve their outcome by starting on 

the short method. A higher start probability on the shorter method was associated with higher 

maximum solve probability and a lower optimal switching tendency α. A better starting method 

reduces the need for a switching strategy.  

The model and experimental results were then compared. It was found that students who used 

more than one method solved the problem with a low complexity method, and their solve time 

using this method was half the time limit or less. This confirms a key prediction of the model. 

From these results, we made recommendations for problem solving instruction. The first 

recommendation is to teach students low solve time methods. The second is to have students 

switch methods if they see their current method as taking too long or unlikely to succeed. The 

third is to have students start on less complex, lower solve time methods. These 



recommendations represent tools and strategies that a problem solver can use to improve their 

outcomes. 

One way to implement these recommendations is to emphasize estimation. Previous work 

framed estimation as a standalone skill currently missing from the curriculum [7] [8]. However, 

the findings of this work suggest that estimation is a low complexity method that can supplement 

higher complexity methods along a spectrum of solution methods. The small time requirements 

and high probability of solve associated with lower complexity methods suggest that there may 

be concrete situations in which these can be incorporated into a class. An example of curriculum 

integration would be to ask a student to solve a problem two ways on an assignment or 

examination. For an assignment, this could potentially be helpful for increasing student 

awareness of multiple solution paths. For an examination, this could allow the instructor to better 

assess students' understanding. 

Additionally, future case studies may seek to explicitly determine which subject areas in the 

curriculum it would make sense to deploy these lower complexity methods. For example, would 

there be opportunities include estimation or simple approximations in Fluid Dynamics, Statics, or 

Controls in mechanical engineering? If so, what are the benefits? If case studies can demonstrate 

effectiveness, it would show the value of estimation and approximation and motivate the 

inclusion of these skills into the engineering curriculum. 
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