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Learning Styles Impact on Ill-Structured Problem Solving Processes of Engineering 

Students, Faculty and Professionals  

 

Abstract 

Ill-structured problems are problems that are complex and open-ended in their design and 

as such they do not have a prescribed solution. They are generally more representative of the 

situations engineers face post-degree, in the “real world”. As these types of problems are integrated 

into college engineering classrooms, it is important to consider how the learning styles of the 

faculty and students involved may impact this problem solving process, and if this is similar or 

different to that of engineering professionals. Specifically, for faculty, their personal learning basis 

may impact the implementation and design of such problems within the curricula. Similarly, 

engineering students’ range of learning styles may influence how they solve or learn to solve 

design problems. Finally, engineering professionals’ learning styles may relate to the problem 

solving processes and external constraints seen in their professions, but may be different from 

those seen in the classroom. This research thus seeks to better understand variations in students, 

faculty and professionals’ learning styles, and how their learning styles relate to the steps and time 

taken to solve various steps of the problem solving process when presented with an ill-structured 

engineering problem.  

As part of a larger study, 60 undergraduate students, academic faculty, and practicing 

engineers within Civil Engineering were asked to solve an ill-structured problem during which 

they were required to verbalize what they were doing. Prior to doing this, participants were asked 

to complete an Index of Learning Style (ILS) survey. Recordings of their verbalization were then 

transcribed and coded to divide the problem solving process into steps. Analysis of this data 

suggests there are some differences in learning styles between undergraduate students, academic 

faculty, and practicing engineers. Moreover, trends suggest that certain components of a 

participant’s preferred learning styles are predictors of the relative amount of time a participant 

will take to complete different steps of the problem solving process. This has implications for the 

teaching of such problems, since learning styles are likely to affect how a faculty teaches. This 

also has implications for how students learn the problem solving process. More research is needed 

to understand what factors and experiences may result in these differences. This includes how ill-

structured problems and the process used to solve them in the classroom may or may not accurately 

represent professional engineering problem solving processes. 

  

I. Introduction 

The current body of academic knowledge has highlighted a disconnect between the 

problem types which students experience during the collegiate studies and those that occur in the 

field. Professionals within the engineering industry encounter problems which are described as ill-

structured [1], wicked [2, 3], ill-defined [4], complex [5], or workplace [1]. While a diverse use of 



terms are employed, with varying amounts of use, all share similar meanings. That is, they describe 

problems which do not have defined correctness in solutions (no right or wrong answers), are not 

easily described, lack defined rules, and often necessitate iteration to generate a final solution. 

Alternatively, the sorts of problems that are commonly experienced with engineering 

classrooms are “Engineering Classroom Problems.” These problems are often presented by the 

course instructor in a manner such that the scenario is well described in a written manner with 

well-defined constraints such that there exists a singular “correct” answer [3]. In order to more 

effectively prepare students for careers within the field of engineering which necessitates that 

graduates have the ability to generate solutions to ill-structured problems, the ABET Engineering 

Accreditation Commission (EAC) [5] has emphasized the importance of integrating such ill-

structured problems within civil engineering curriculum. ABET EAC has identified complex 

problem solving skills (Outcome 1) as one of its defined learning outcomes. Specifically, this 

includes the “ability to… solve complex engineering problems by applying principles of 

engineering, science, and mathematics.” Concurrently, ABET EAC has denoted the importance of 

understanding non-engineering (i.e., non-technical) constraints (Outcome 2). More specifically, 

this includes “an ability to apply engineering design to produce solutions that meet specified needs 

with consideration of public health, safety, and welfare, as well as global, cultural, social, 

environmental, and economic factors.”  

A broad diversity of students enroll in engineering programs throughout the country and 

the world, and this demographic diversity has increased over time [6]. Many of these engineering 

students ultimately become industry professionals, professors, and/or instructors. To support the 

learning of engineering concepts, and in this case, complex problem solving processes, it is 

important to consider the diversity of learning styles [7] that exist within this population. Learning 

styles according to Felder and Silverman [8] are preferences in the way one learns that can be 

defined in four dimensions: Active-Reflective, Sensing-Intuitive, Visual-Verbal and Sequential-

Global. Some research suggests that a good way to understand differences in individuals to support 

classroom learning is through the understanding of each person’s learning style [9]. It is noted that 

learning styles are not necessarily the only way that students can learn, but suggest their 

preferences in learning.  Research also suggests that if the teaching style of teachers and learning 

styles of students match, learning can best be achieved [10].  

Among literature on learning styles in engineering, the majority of engineering education 

literature that relates to learning styles focuses on students [13,14]. For example, a study of 

engineering students in Malaysia suggests that engineering students were more strongly Active, 

Sensing, Visual, and Sequential learners [15]. The same finding of learning style preferences was 

found in a research study that included students in computer science, civil, electrical, and 

mechanical engineering in India. These more recent studies are consistent with prior studies as 

well. Among these studies, a key finding to note, however, is that while overall the populations 

were more inclined to be Active, Sensing, Visual, and Sequential learners, the reported learning 

styles across students span the spectrum in each of the four dimensions, and in some cases only 

slightly favored one side of each dimension over the other. For example, Kuri [16] found, among 



the students surveyed, a balance between Global and Sequential learners. Tulsi [17] found a near-

even split between Active and Reflective learners specifically in civil engineering. These suggest 

that while research indicates that engineering students, on average, have preferences for certain 

types of learning styles, these learning styles also vary.  

Beyond students, the stronger focus on students in the literature also means more limited 

information on academic professionals and especially practicing engineers. Research does suggest, 

however, that in many cases the methods of teaching in engineering courses are incompatible with 

engineering students’ learning style preferences [18]. In addition, little research has included 

academic faculty and practicing engineers as two distinct groups. Commonly these groups are 

combined and defined as professionals.  

In order to better integrate ill-structured problems within the curriculum, the approach to 

these problems associated with a person’s learning style should be examined, as well as the 

differentiation between learning styles among participant (faculty, student, practicing engineers) 

groups. This is important as differences between groups can be the result of significant external 

factors as well as influence educational instruction. The goal of this study is to explore learning 

styles representation among students, faculty, and practicing engineers as well as understand how 

each learning style spends their time while solving ill-structured problems. Analyzing the interplay 

between these factors will help to identify opportunities for improvements to undergraduate 

instruction that teach and utilize ill-structured problems in the classroom environment. 

 

II. Methods 

 

Participants 

Sixty undergraduate students (freshman to senior), academic faculty, and practicing 

engineers (5+ years experience) within civil and environmental engineering were asked to 

individually solve an ill-structured problem as well as complete an Index of Learning Style (ILS) 

survey. All faculty, students and professionals lived and/or worked in the United States during the 

time of the data collection. This was part of a larger study on ill-structured civil engineering 

education that occurred between 2017 and 2021. All participants who took part in the study did so 

on a voluntary basis and were compensated for their participation.  

 

Data Collection 

Participants were asked to complete the Index of Learning Styles Survey (ILS). This survey 

was chosen due to its high validity and reliability [6,7] as well as its consistent use in studies within 

the broader scope of engineering education [8-10]. After completion of the ILS survey, participants 

were given a 35-minute period to solve an ill-structured engineering problem. As participants 

engaged with this task a verbal protocol analysis (VPA) was used to collect collaborating data. 

VPA has been used extensively within literature as a method by which to examine problem solving 



[19-24]. This method requires that participants vocalize their thought process while working on 

the problem. Besides the problem itself, participants were limited to only blank “scrap” paper on 

which they could visualize. During the task participants were not allowed access to reference 

literature (physical or digital). The ill-structured problem that participants were asked to solve was 

to construct a solution focused on removal of trash from a river [19]. This problem was generated 

by members of the research team along with other ill-structured problems. This problem was 

chosen for use in the final study based upon the input of the project’s advisory board members and 

discussion among the research team. 

 

Data Analysis 

Data for this study is from 60 Index of Learning Styles survey as well as transcripts 

generated from the ill-structured problem solved by each participant via VPA. The index of 

learning styles survey generates a profile for each participant based upon 4 dimensions. These 

include: Active-Reflective, Sensing-Intuitive, Visual-Verbal, and Global-Sequential. The first 

dimension is associated with the way a participant processes information. Active learners best 

learn information by working actively, and applying the material while reflective learners like to 

think and reflect on the material. For the second dimension, those who prefer a sensing learning 

style like facts and following standard approaches whereas an intuitive thinker prefers to do what 

feels right. For Visual-Verbal, visual learners like to see what they are learning about as compared 

to verbal learners who prefer text and talking. Finally, for Global-Sequential, sequential learners 

prefer learning and solving problems in small sequential steps, versus global thinkers who absorb 

a lot of different information.  

Within each of these dimensions, participants are categorized based upon where their 

responses ranked on either side of the dimension (very strong preference, moderate preference, 

balanced). For example, across the four dimensions, a participant may be a “very strong Active 

learner” with balanced Intuitive, moderate Visual, and very strong sequential preferences. This 

data was then reclassified such that participants were considered to show expression to either side 

of a dimension or considered to be balanced. For example, within the dimension of Active-

Reflective, a participant would be defined as active (includes both very strong Active” and 

“moderate Active”), reflective (includes both “very Reflective” and “moderate Reflective”), or 

Balanced. This process was followed because the number of participants that fell into the “very 

strong” category in each of the four dimensions was minimal. This best captures trends while 

minimizing categories of data that have a smaller number of participants.  

After participants finished the ill-structured problem audio recordings of participants were 

transcribed for data analysis. Each of these transcripts were coded by a team of three coders using 

methodologies outlined by Corbin & Strauss [25]. Open, axial, and selective coding was used as a 

basis to generate a codebook. During the open coding stage, transcripts were read several times 

then using the participants own words as a basis labels were generated by each team member such 

that it summarized the participants thoughts while problem solving. Each team member went line 



by line within each transcript reading what was said explicitly and what such statements 

represented in one's solution generation process.  

Following open coding, team members applied axial coding. During axial coding, 

relationships between open codes were identified such that categories and related subcategories 

were increasingly developed. Via axial coding a reduction in the total number of open codes was 

made by merging codes that express similar statements/sentiments. During selective coding a 

foundational category is chosen such that related subcategories become unified. This step is the 

conclusionary step, as defined by Corbin & Strauss [25], in developing a codebook.  In total, the 

codebook went through 18 iterations, ultimately resulting in 13 code categories, and a total of 24 

subcodes across all categories. It was determined that Idea Expansion, for example, was 

considered a core category.  Within this category were the subcategories of Expand Idea Details, 

Make Assumptions, and Calculations. Table 3 shows a few of the codes utilized in this paper 

associated with the broader research study, along with some examples of quotes representing what 

is included in each type of code. For a full set of codes developed, please see [26-28]. The 

codes/subcodes shown in Table 3 are included in this paper because they were found to most 

strongly correlate with participants' learning styles.  

 

Table 3 Selected Coding Schemes for Verbal Protocol Analysis for Ill-structured Problem 

Solving Process 

Code  Definition  Example(s) 

 Problem 

Statement 

The participant is 

reading the problem 

(paraphrasing, 

summarizing, 

interpreting, or repeating 

verbatim) 

 “All right,  so reduce the level of trash. Range of options to consider. Implement   

solutions in the streams," so the streams- streams, um, have a depth of   1 to 5 feet, a 

width of 5 to 10 feet and- and the river- river- river is-  depth is 10 to 25 feet and it's 30 

to 50 feet.” 

  

“Essentially,  since we are trying to test a small area, find a, find a process, whether it's 

a chemical, physical, whatever type of process mechanical uh, to do  this. And, then from 

that, based on-on that find a solution that is-that is um easy.” 

 Workability  Discussion of if the 

detailed idea itself or its 

specific details are 

possible to do/likely to 

work 

 “They’re not concrete stakes anymore, tho-those are not gonna work.” 

 

“What if you incentivize tourists to remove gum? I can't see-I can't see New York 

tourists doing that.” 

 

“I’m trying to envision how much gum there is. So that's you know, it may not be enough 

to where you could just do it.” 



 Expanding 

Ideas 

 When the participant 

develops the initial idea 

into a detailed idea. 
  

 “So, you could do the sidewalks to get the gum off -- we're just gonna like take a- a big 

scraper thing, that's beveled kind of at the edge of it, you know, almost like a knife and 

that-- that's going to be pretty wide. That two people probably will operate. And they're 

just gonna - There’s two of them. It's going to be like a, uh-- It's going to have like a bar 

thing- And both wanna come down to like the blade. They'll be like, however wide the 

sidewalks are and that they're really wide, they might have to go by twice.” 

 

“Um, and uh, and if we could automate that somehow, where you'd have a-a, uh, where 

it wouldn't be piece by piece, maybe it could just, uh, have a you know, a-a small piece 

of equipment that just goes along and freezes the ice.”  

 

“Um, so can we, uh, um, can we end up developing a-a-a more mechanical where we 

can go through and at night-at night to do some type removal with limited numbers of 

people and so on.” 

 

The codes were developed by a subteam within the larger research team.  Three coders met 

weekly to discuss each transcript and compare codes. In the event a disagreement between coders 

occurred or a question was raised, the group would consult an additional coder in order to reach a 

consensus. In utilizing this method the study was able to achieve high inter-coder reliability. In 

order to more effectively code transcripts, a data analysis tool, MaxQDA [28] was employed. 

Using MaxQDA’s “Code Coverage - Text, Tables, and PDF’s” operation each transcript’s code 

was quantified. This operation generates a percent for each subcategory code such that when added 

it totals the percentage of the entire document that was coded. In order to ensure the percentages 

used represent that of the coded text, each was divided by that transcripts' total percentage of text 

coded. To represent the distribution of data, this was then plotted using box plots to visually define 

the range, maximum and minimum values as well as the average and median. 

 

III. Results & Discussion 

For the overall dataset, the count and percentage of participants with each of the four 

dimensions of learning styles is shown in Table 1. The ILS survey data was also grouped based 

upon the role each participant belongs to: student, practicing engineer, or academic faculty. Table 

2 shows the finalized form of ILS data. This is also graphed in Figure 1 to more easily understand 

the data through data visualization. 

 

Table 1. Count and Percentage Breakdown of Learning Styles (Note: *bold* indicates most 

common category) 

# Participants  

(% of role total) 

# Participants  

(% of role total) 

# Participants  

(% of role total) 

# Participants  

(% of role total) 

Active 15 (25) Sensing 24 (40) Visual 34 (56.67) Global 11 (18.33) 

Balanced 36 (60) Balanced 29 (48.33) Balanced 26 (43.33) Balanced 36 (60) 

Reflective 9 (15) Intuitive 7 (11.67) Verbal 0 (0) Sequential 13 (21.67) 

 

In the overall dataset, for Active-Reflective, most participants were considered to be 



Balanced; this same trend is observed for Sensing-Intuitive, and Global-Sequential. For these 

three, second to the Balanced category is Active, Sensing, and Sequential, which is in agreement 

with prior literature that collected data from engineers. For Visual-Verbal, the majority of 

participants were considered Visual, with Balanced being second. Notably, there were no 

participants that would be considered Verbal. Therefore overall, it can be said that on average, 

participants in this study generally favored Active, Sensing, Visual, and Sequential learning styles, 

with many considered to be balanced between both extremes.  

 

Table 2. Count and Percentage Breakdown of Learning Styles sorted by Role (note: *bold* 

indicates most common category) 

 

Role 

Active/Reflective  

 

# Participants 

 (% of role total) 

Sensing/Intuitive  

 

# Participants  

(% of role total) 

Visual/Verbal 

 

# Participants  

(% of role total) 

Global/Sequential  

 

# Participants  

(% of role total) 

Undergraduate Students 

 Active 8 (23.53) Sensing 13 (38.24) Visual 20 (58.82) Global 4 (11.76) 

 Balanced 21 (61.76) Balanced 16 (47.06) Balanced 14 (41.18) Balanced 23 (67.65) 

 Reflective 5 (14.71) Intuitive 5 (14.71) Verbal   0 (0) Sequential 7 (20.59) 

Practicing Engineers 

 Active 3 (33.33) Sensing 3 (33.33) Visual 3 (33.33) Global 2 (22.22) 

 Balanced 6 (66.66) Balanced 5 (55.56) Balanced 6 (66.66) Balanced 5 (55.56) 

 Reflective 0 (0) Intuitive 1 (11.11) Verbal   0 (0) Sequential 2 (22.22) 

Academic Faculty 

 Active 4 (23.53) Sensing 8 (47.06) Visual 11 (64.71) Global 5 (29.41) 

 Balanced 9 (52.94) Balanced 8 (47.06) Balanced 6 (35.29) Balanced 8 (47.06) 

 Reflective 4 (23,53) Intuitive 1 (5.88) Verbal   0 (0) Sequential 4 (23.53) 

 

 Table 2 shows that practicing engineers were majority Balanced in all categories, with 

active, sensing, and visual being second most common (Global/Sequential were tied). Among 

faculty, Balanced was most common for the Active/Reflective, Global/Sequential, and 

Sensing/Intuitive (tied with Sensing). Visual was most common for the Visual/Verbal category. 

For students, most were considered Balanced, except for Visual/Verbal, in which the majority were 

Visual. Overall, the distribution of results is somewhat similar across categories, as visually 

represented in Figure 1.  

 



 
Figure 1. Visual representation of overall distribution of learning styles for the overall dataset 

 

Three key trends were found when comparing participants' learning styles and the amount 

of time spent in various components of the problem solving process. For inclusion in this paper, 

the relationship between learning style components and codes from the problem solving process, 

must indicate a clear differentiation in time spent based upon one’s learning style.  

As shown in Figure 2, a person that is classified as having an Active learning style, spent 

less time (12.1%), on average, on the Problem Statement (as defined in Table 3, which is the period 

in the problem solving process where the participant is reading the problem) compared to those 

that are classified as Balanced (13.4%) or Reflective (18.7%). Active learners are considered those 

that process information by doing whereas a Reflective learner processes information via 

contemplation [7]; Balanced learners are in between these two extremes. Therefore this trend 

makes sense when considering that Reflective learners tended to take more time to think through 

the problem, in this case, by reading through the problem statement, before proceeding with 

solving the problem.  

 

Figure 2. Percentage of time spent on the Problem Statement, across the Active-Reflective 

dimension of learning styles (Note: Active (n = 15), Balanced (n=36), Reflective (n=9)) 



When considering the possible implications of this in the engineering classroom, this may 

suggest that using active learning methods, such as think-pair-share (TPS), there may be variation 

in how much time students may need to think through their answer to a question. In TPS, students 

think on their own on how to answer a question, then talk with a classmate about what they thought 

about, then share with the rest of the class.  This suggests it may be beneficial to give slightly more 

time in the “think” to support the reflective learners.  

This difference among the Active-Reflective dimension of learning styles is inversely 

expressed when considering time spent on Workability (as defined in Table 3, which is the period 

in the problem solving process where the participant is evaluating if a detailed idea itself or its 

specific details are possible to do/likely to work), as shown in Figure 3. Spending time considering 

Workability in this study is more aligned with Active learners as compared to Reflective learners, 

where Active learners took approximately 5.2% of the time to consider Workability, while 

Reflective learners only took approximately 2.9% of the time.   

 

Figure 3. Percentage of time spent by participants on the Workability grouped by sub-

dimensions within the larger Active-Reflective dimension (Note: Active (n = 15), Balanced 

(n=36), Reflective (n=9)). 

Differences in time spent during the problem solving process considering Workability are 

also expressed within the Global-Sequential dimension of learning styles. Global learners are those 

that learn by exposing themselves to a totality of information and then learn by synthesizing this 

information together; conversely Sequential learners build upon small units of information over 

time in which by the end the learner understands (“learns”) the totality of the information. Balanced 

learners include components of these two extremes. In Figure 4 it is shown that Global learners, 

on average spend slightly less time on Workability than Sequential learners. This may reflect how 

such learners approach the solving of an ill-structured problem. Global learners may not spend as 

much time following different steps that focus on refining a detailed idea since they would likely 

generate a more refined detailed idea all at once.  Conversely, a Sequential learner may take more 



time to consider Workability as one or multiple steps in the development of a refined solution after 

the initial generation of the detailed idea. 

 

Figure 4. Percentage of time spent by participants on the Workability grouped by sub-

dimensions within the larger Global-Sequential dimension. (Note: Global (n = 11), Balanced 

(n=36), Sequential (n=13)) 

 The third trend observed is that Visual learners on average spend more time on the 

Expanding Ideas (as defined in Table 3, which is the period in the problem solving process where 

the participant is taking their initial idea and developing it into a detailed idea) step in the problem 

solving process than Balanced learners. Prior to further discussion, we note that this research as 

well as others has shown that engineers are generally skewed to the Visual side of the Visual-

Verbal dimension. In this study all participants were either classified as Visual or Balanced, as 

shown in Figure 5. As such this study is only able to compare these groups. 

Visual learners spend more time Expanding Ideas (~48.1% of time) as compared to 

Balanced participants aligns with what is generally known about Visual versus Verbal learners. 

Visual learners rely significantly on visuals (e.g. pictures, diagrams, flow charts, time lines, films, 

and demonstrations) to learn information, while Verbal learners benefit most from words, either 

written or spoken explanations. While the ill-structured problem presented to participants included 

both verbal (written words) and visual (pictures and diagrams) components, Visual learners would 

likely still require further visuals to generate and develop their ideas. This suggests that Visual 

learners may need to spend more time drawing pictures, and diagrams  to help them process 

information and generate solutions. Balanced learners are more likely to rely on both visual and 

verbal information to learn and solve problems. Balanced learners may therefore employ both 

visual and verbal processes when developing solutions. In doing this, Balanced learners may be 

able to reduce the time spent on Expanding ideas by writing down information that visual learners 

may need to draw. 



  

Figure 5. Percentage of time spent by participants on the Expand Idea grouped by sub-

dimensions within the larger Visual-Verbal dimension (Note: Visual (n = 34), Balanced (n = 

26)). 

 As shown in this study, variation in time spent in different steps of the problem solving 

process when solving ill-structured problems in some cases has a relationship to a person's learning 

style. Table 2 denotes variation in representation of these dimensions based upon that person's 

position, namely: Undergraduate Student, Practicing Engineer, or Academic Faculty. Along with 

identifying one's learning style the Learning Style Index also suggests the instructional approach 

that may be most comfortable for that person to use to teach, and to learn from.  This is based on 

the assumption that if one learns in a specific manner, they are more likely to instruct in a way that 

matches/supports the manner in which they learn [7, 30], however since the ILS was first created 

there has been an increased emphasis on the use of teaching in a manner that caters to diverse 

learning styles. Using this information, assumptions related to misalignment in instructional 

methods and the post college careers can be highlighted.  

Thus far this research has suggested that if a person is less of an active learner, they spend 

more time on reviewing the problem statement as a part of the problem solving process. While the 

majority of both practicing engineers and academic faculty are considered Balanced (on the 

Active-Reflective scale) in this study, only academic faculty contain reflective learners. Given this, 

instructional practices within undergraduate classes that employ ill-structured problems, 

particularly as taught by this group of faculty, may over emphasize a reflective style when it comes 

to thinking through the problem statement.  

Within the Visual-Verbal dimension, practicing engineers are the only group that has more 

participants classified as Balanced than Visual. This is notable related to instructional methods, 

i.e. if faculty generally prefer a Visual learning style, it is likely they are using this in the teaching 

of classes via the use of visuals in classroom teaching. For example, when helping to guide students 

through ill-structured problems, academic faculty may more strongly emphasize methods for 

expanding ideas that appear to correlate more with the Visual learning style. While this appears to 



align well with students’ preferred learning style as well, it also suggests that overly Visual-reliant 

teaching may be teaching students in a way that is different than what might be expected to be 

seen by practicing engineers. It is suggested by other research that a person’s learning style can 

change over time, and can be influenced by external factors such as a person’s profession [31]. 

Therefore, the difference seen between engineering professionals and faculty/students may suggest 

that professional engineers’ learning styles may be adapted to meet the profession’s need for 

conducting work in both the Verbal and Visual dimensions.   

 

V. Conclusion 

 This research has focused on better understanding variations in how engineering students, 

faculty and professionals preferred learning styles relate to their problem solving processes. 

Specifically, this research focuses on key trends seen that relate time spent on different steps in 

the problem solving process to one or more of the 4 dimensions of learning styles.  

While academic faculty play an important role in educating the next generation of 

engineers, it is important for academic faculty to consider how their own learning style frames 

their instruction. Similarly, it is important to note that faculty and students’ learning styles may 

not be the same as professional engineers’ learning styles. Given that faculty are training students 

to become, in large part, professional engineers and solve the future’s challenging and highly ill-

structured engineering problems, if there is a misalignment in the learning styles among these three 

groups, there is a need to ensure that the way that students are taught to solve these problems is 

conducive to supporting a successful future engineering career. Given that learning styles can 

change over time (e.g. [32]), including throughout a student’s education, this research suggests 

that there are some differences in both professional engineers problem solving processes and their 

learning styles that may be beneficial to further understand. By better understanding these 

differences, the engineering classroom can help to better reflect these and teach to the likely future 

methods of problem solving that students are likely to use as professional engineers.  

Moving forward, further research is needed to understand how a person’s role and the 

environment in which that role exists impact a person’s learning style. This can also further help 

support defining how to best instruct students on the solving of ill-structured problems such that it 

more accurately reflects the process of practicing engineers.  
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