Most engineering ethics education is segregated into particular courses that, from a student’s perspective, can feel disconnected from the technical education at the center of their programs. In part because of this disconnect, several immersive programs designed to train engineering students in socio-technical systems thinking have emerged in the U.S. in the past two decades. One pedagogical goal of these programs is to provide alternative ideologies and practices that counter dominant cultural paradigms that marginalize macroethical thinking and social justice perspectives in engineering schools. In theory, longer-term immersion in such programs can help students overcome these harmful ideologies. However, because of the difficult nature of studying cultural change, very few studies have attempted to provide a thick description of how these alternative cultural practices are influencing student perspectives on engineering practices. Our study offers a rare glimpse at student uptake of these practices in a multi-year Science, Technology, and Society (STS) living-learning program.
Our study explores whether and how cultural practices within an STS program help students develop and sustain the resources for using a socio-technical systems thinking approach to engineering practice. We grounded our work in a cultural practices framework from Nasir and Kirshner [1] which roughly understands practice to be “a patterned set of actions performed by members of a group based on common purposes and expectations, with shared cultural values, tools, and meanings” ([2, p. 99] as cited in [3]).
Our descriptions of collective enactments of cultural practices are grounded in accounts of classroom events from researcher fieldnotes and reflections in student interviews. Looking across the enactment of practices in classrooms and students’ interpretations of these events in interviews allows us to describe the multiplicity of meanings that students distill from these activities. This paper will present on multiple cultural practices salient to students we have identified in this STS community, for example: cultivating an ethics of care, making the invisible visible, understanding systems from multiple perspectives, and empowering students to develop moral stances as citizens and scientists/engineers in society. Because of the complexity of the interplay between the scaffolding of the STS program’s pedagogy and the emergence of these four themes, we chose to center “cultivating an ethics of care” in this analysis and relationally explore the other three themes through it. Ethics of care manifests in two basic ways in the data. Students talk about how an ethics of care is part of the STS program community and how the STS program fosters the need for an ethics of care toward communities outside the classroom through human-centered engineering design.
Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.