
Paper ID #37670

Board 59: WIP: Lab Container: An environment to manage a student’s time
to complete programming labs while providing effective feedback from
course staff

Mr. Yu Sheng Pan, University of Toronto

Yu Sheng Pan is a fourth year computer engineering student at University of Toronto who will be pursuing
a MBA degree at the Rotman School of Management in fall of 2023.

Mr. Aniruddha Redkar, University of Toronto

I am a fourth-year computer engineering student at the University of Toronto. With my technical skills
and creative mindset, I am determined to make a significant impact in the field of technology.

Sowrov Talukder, University of Toronto

Sowrov Talukder is a Computer Engineering student at the University of Toronto helping to improve
programming labs in education.

Mr. Parth Sindhu, University of Toronto
Dr. Hamid S. Timorabadi, University of Toronto

Hamid Timorabadi received his B.Sc, M.A.Sc, and Ph.D. degrees in Electrical Engineering from the
University of Toronto. He has worked as a project, design, and test engineer as well as a consultant to
industry. His research interests include the applicati

©American Society for Engineering Education, 2023



WIP: Lab Container:

An environment to manage a student’s time to complete programming labs

while providing effective feedback from course staff

Abstract

Lab Container is a web application aimed at enhancing the experience of students and instructors

in programming courses. The tool provides a containerized and interactive environment for

students to complete lab assignments and fosters collaboration between students and instructors.

Lab Container includes a comprehensive inventory of resources, including compilers and

libraries, and enables instructors to track students’ progress and provide real-time feedback on

their code. The frontend of the platform is built using React JS, while the backend employs

microservice architecture, where the microservices communicate with each other to provide a

seamless and integrated experience for all users. An empirical study was conducted to assess the

usability and functionality of Lab Container, with results indicating that the tool effectively

reduced the amount of time students spent on lab assignments, and improved collaboration

between students and instructors. The design of Lab Container represents a step forward in

computer science education and has the potential to transform the way students engage with lab

assignments.

Background

The issue of students over-allocating time to complete programming lab assignments in a course

and falling behind other subjects has been a persistent challenge in computer science education.

This problem is exacerbated by the difficulty that instructors face in reading and providing

feedback on student code, as well as the limited information they received from auto-graders.

This leads to a situation where students are forced to study less in non-programming courses,

skip more lectures, and fall behind on those courses as a result.



This project introduces a solution to this challenge in the form of Lab Container. Lab Container

is a flexible software tool that provides students with a containerized environment to complete

their lab assignments. It also includes all necessary lab resources, such as libraries and compilers,

which are configured by the course staff, and allows for ongoing progress tracking by instructors.

With all the necessary tools provided within each student’s container, they are able to access

these resources anywhere and be able to complete assignments gradually rather than in one

sitting. This not only reduces the student’s working time but also provides instructors with

information about the student’s work, such as time spent, version history, and contribution from

each team member. The software was tested on two groups of current engineering students from

the University of Toronto with a focus on usability and functionality. The first group was on a

small group of upper-year students and then the second group was on a larger group with

students of different years. The results of the project highlight how the project can be best used

to improve education for both students and instructors in programming courses.

Challenges with Programming Courses

The current implementation of programming courses presents several challenges for students and

instructors alike. One major challenge is the allocation of time for lab assignments, as the

provision of starting code and an automated testing tool (auto-grader) often leads to students

over-devoting their time to complete the assignments. This can result in students prioritising

coding labs over other courses as research has indicated that students often experience

difficulties in balancing the demands of multiple courses and may prioritise assignments based

on deadlines and perceived difficulty, leading to reduced engagement in other subjects [1].

Studies have also shown that the use of automated grading systems in programming courses can

limit the effectiveness of formative feedback and lead to a narrow focus on syntax, rather than

conceptual understanding [2]. On the other hand, the variability of coding implementations and

methods among students can make it very time-consuming for instructors to understand the

existing code before providing feedback, further hindering the educational experience. The

reliance on automated grading as the primary metric for assessment also ignores key information

regarding a student’s approach and understanding of the assignment, which is a crucial element

of engineering and computer science education.



Related Works

The University of Toronto has implemented two solutions for programming labs - PCRS and

MarkUs. PCRS, an application designed by a professor at the university, provides interactive

programming exercises for Python, C, Java, and Relational Algebra and SQL. MarkUs is a

platform that allows students to submit their code for feedback, testing, and grading. However, a

significant drawback of both these solutions is that there is no way for course staff to monitor the

time spent by students on their programming labs. This lack of monitoring allows students to

allocate excessive time towards programming labs, adversely impacting their other coursework.

To address this challenge, Lab Container offers a comprehensive platform for creating and

completing programming labs while simultaneously enabling course staff to track student

progress and time spent on labs to prevent over-investment of time in programming labs.

A Better Learning and Teaching Experience

To create a better experience for students and instructors in programming courses, several

approaches can be taken. One approach is to incorporate active learning strategies, such as pair

programming and group projects, which can help students engage with the material and develop

a deeper understanding. This approach has been shown to significantly improve student learning

outcomes, such as increased success rates in introductory courses, increased retention in the

major, higher quality software, and higher student confidence in solutions [3]. Fostering a

collaborative learning environment through pair programming and group projects can also help

students develop teamwork and communication skills, creating a more enjoyable and supportive

learning environment. Providing personalised feedback can address specific areas where

improvement is needed and provide guidance on coding implementations and methodologies.

Focusing on the problem-solving process, rather than just the final solution, can help students

develop critical thinking and problem-solving skills [4]. Finally, utilising technology tools that

track students’ progress and provide instructors with information about their work can also

improve the experience for both students and instructors.



Lab Container is an effective solution that builds on the above suggestions for creating a better

experience for students and instructors in programming courses. It provides a flexible platform

for students to complete programming lab assignments individually or in teams, while giving

instructors the ability to easily monitor their progress and provide real-time feedback on their

code. Most importantly, Lab Container encourages students to incrementally work on their labs

instead of cramming right before the deadlines. This promotes better time management and

reduces the amount of time needed to spend on assignments. Lab Container can enhance the

learning experience for students and instructors in programming courses by facilitating

collaboration, encouraging a focus on the problem-solving process, and making lab assignments

less time-consuming for students.

Technical Design

System Level Overview

The design of Lab Container is a web application that consists of a reactive frontend and an

efficient backend. The frontend is implemented using React JS, a widely adopted JavaScript

library for building user interfaces. It features three main components: the Authentication UI,

Student Working Environment, and Dashboard, each of which serves a specific purpose in

enhancing the user experience.

The backend of Lab Container is designed with a microservice architecture, which allows for a

scalable and flexible solution. The architecture consists of four independent microservices,

including Authentication, Analytics, Feedback, and Student Manager Services, each of which is

responsible for a specific aspect of the application. Furthermore, the backend includes three

independent Postgres databases that provide reliable and secure data storage for the application.

The design for Lab Container was chosen to provide a seamless and efficient experience for

users and meet the demands of modern web applications.



Figure 1: System Level Diagram

Module Level Overview

Student Environment UI

The Student Working Environment module of Lab Container refers to the frontend interface

where students can complete their assignments on the web. This module integrates key features

such as code editing, terminal access, file management, milestone tracking, and real-time

feedback to enhance the overall learning experience. These subcomponents work together to

provide a comprehensive and streamlined solution for students to work on their assignments.

Authentication UI

The Authentication module encompasses the frontend components related to the creation and

management of user accounts as well as the process of logging in to the Lab Container. This

module comprises three key components: the Login page, the Signup page, and the Forgot

Password functionality. The Login page enables users to securely enter their credentials. The

Signup page provides a convenient and straightforward process for creating new user accounts.



The Forgot Password functionality allows users who have lost or forgotten their password to

reset it in a secure and efficient manner.

Dashboard UI

The Dashboard UI module pertains to the frontend pages of the student and course staff

dashboards within Lab Container. The student dashboard provides an interface for students to

monitor their progress on laboratory assignments and manage their teams, while the course staff

dashboard enables the creation and customization of lab assignments, as well as the monitoring

of student progress.

Authentication Service

The Authentication Microservice is a component of the backend architecture in Lab Container. It

provides a secure and centralised API for authentication and authorization management. The

microservice implements JSON Web Token (JWT) authentication and refresh token mechanism,

ensuring secure transmission of information between parties. The microservice is responsible for

the creation and authentication of user accounts through JWT tokens.

Analytics Service

The Analytics Service refers to the Lab and Team Management microservice. This module

serves as the central hub, providing API functionality for the creation, organisation, and

management of lab assignments, milestones, and student teams. It is responsible for maintaining

communication with the Container Runtime in order to initiate new instances of the Student

Manager Service.

Student Manager Service

The Student Manager Service refers to the student container service that is assigned to each

student for every lab assignment. The service is dynamically instantiated as students start each

assignment. The microservice comprises three key components:

1. Socket IO API: It facilitates the connection between the frontend environment and the

microservice, providing a secure and efficient interface for the web terminal.



2. File Manager API: It enables students to perform file operations such as saving, viewing,

and editing within their individual containers.

3. Progress Tracking and Reporting Component: This component tracks and reports student

progress and performance metrics to the analytics service in a timely manner.

Feedback Service

The Feedback Microservice offers APIs that facilitate communication and exchange of feedback

between students and course staff regarding their progress and performance in the assigned labs.

This microservice enables students to request assistance from the course staff during milestones,

and for the course staff to provide constructive feedback to support student progress and

learning.

Functionality Testing and Verification

The test plan for Lab Container is designed to gather feedback from student and instructor

volunteers. The team created two surveys - a Consent Form And the Feedback Survey. The

Consent Survey is used to inform potential volunteers about the testing process and to obtain

their consent to participate. The survey asks if they are willing to complete a Feedback

Questionnaire at the end of the testing period, and also informs them of their right to revoke their

consent at any time.

The Feedback Survey is the main tool for collecting feedback from the volunteers. The survey

consists of three sections: usability, functionality, and open-ended questions. The usability

section includes 10 statements that are scored on a scale of Strongly Disagree to Strongly Agree.

The functionality section includes 10 items that are scored on a scale of Very Unsatisfied to Very

Satisfied. The open-ended sections include two questions that ask about the strengths and

weaknesses of the application, with space for users to provide more detailed feedback.

The test plan has two stages, both of which start with the collection of volunteers through the

Consent Survey. In stage one, the team recruited five engineering students as volunteers to use

the Lab Container for a three-day period. Upon completion of the testing period, the volunteers



completed the Feedback Survey to report their experience with the application and any bugs

found. The results of the survey were analysed, and improvements were made based on the

scores and open-ended answers. In stage two, the team recruited a total of 30 lower-year

engineering students to use the improved version of the Lab Container for two weeks. At the end

of this period, the Feedback Survey was given to each volunteer, and the overall usability and

functionality scores were calculated.

The usability and functionality scores were calculated using a method adapted from the System

Usability Scale (SUS). Each response to each question is given a score of 0 to 4, with 0 being

Strongly Disagree/Very Unsatisfied and 4 being Strongly Agree/Very Satisfied. The scores for all

10 questions are added together and multiplied by 2.5 to convert the range from 0-40 to 0-100. It

is important to note that the final score is not a percentage even though the range is 0-100. The

average SUS score is 68 [5].

Survey and Feedback Results

The preliminary evaluation of Lab Container was conducted with a small group of five current

engineering students, who each provided valuable insights through the Feedback Survey. The

results indicated a largely positive response with regard to the application’s responsiveness and

overall design of the user interface. On the other hand, some challenges were identified in the

areas of interface complexity and team collaboration, which received comparatively lower

scores. The feedback from the open-ended questions further emphasised the usefulness of the

milestone-tracking feature and the attractive user interface. However, some areas of

improvement were identified, including the creation of teams for labs and some backend

connection issues. Overall, the average usability score was 67 and the average functionality score

was 65, slightly below the team’s desired target of 68.

The team took the feedback and comments from the first round of testing and made several

improvements to the application before proceeding to the second round of testing. The team

improved the usability of the application by simplifying the user interface for both students and

instructors. The first round of testing showed concerns with usability. Buttons and tabs were



made so that users know what actions will occur without any confusion. Text was also put in

places where they don’t clutter up space and are easy to read and close. Another major area of

feedback from students was on the ease of team collaboration in the application due to many

programming labs being group labs. These improvements were made in four months after the

first round of testing. The second round of testing showed improvements in usability and more

specific feedback was given about the team's page and bugs. The team section on the students

page was made so that many processes were automated such as selecting the correct lab and

joining a team that the user created. Finally, testing identified backend bugs that impacted

usability and the functionality.

After compiling the survey results of 30 undergraduate engineering students, the results were

shown to have noticeable improvements, with the average usability score increasing to 69.33 and

the average functionality score improving to 68.23, meeting the team's desired target goal. These

results were highly encouraging, demonstrating that the team’s efforts to improve the application

were successful. The data summaries of the second round of Usability and Functionality scores

can be seen in the diagrams below.

Figure 2: Data Summary - System Usability Score



Figure 3: Data Summary - System Functionality Score

The team would like to emphasise the results of two specific questions from the testing survey

[seen in figures 4 & 5], which asked volunteers to rate the statements: "I believe this application

can help me save time when completing assignments" and "If the system is functional, I would

use the system frequently". The results indicated that 20 out of 30 respondents believed that the

application can help them save time when completing assignments, with only 4 respondents

disagreeing with this statement. Additionally, 19 out of 30 respondents indicated that they would

use the system frequently if it was functional, with only 3 respondents indicating that they would

not. These results demonstrate that Lab Container has the potential to be a valuable tool for

students in computer science education, providing them with an effective and efficient way to

complete their assignments and manage their lab work.



Figure 4: Survey Results - “I believe this application can help me save time when completing

assignments”

Figure 5: Survey Results - “If the system is functional, I would use the system frequently.”



Future Work

The preliminary testing of Lab Container has provided helpful insights into areas of

improvement for Lab Container. The results of the surveys will be used to inform further

developments to Lab Container before it is tested on a larger group of volunteers.

In order to improve the overall user experience, the team will work on streamlining the interface

to make it more simple and intuitive. The team will also work on enhancing the team

collaboration features to make it easier for students to work on lab assignments. Furthermore, the

team will address the backend connection issues to ensure a more consistent experience for all

users.

In the future, the team plans to conduct a larger-scale study with a larger group of volunteers to

further validate the effectiveness of Lab Container in improving the overall quality of

programming courses. The team will also consider expanding the scope of the application to

support other programming platforms to make Lab Container a more versatile tool.

Conclusion

In conclusion, the team has developed a web application called Lab Container that provides an

interactive environment for programming students to complete lab assignments. The tool

provides all necessary resources for students and allows instructors to track students’ progress.

The results of the preliminary testing showed that the most favourable responses were for the

categories responsiveness and look and feel, while interface complexity and team collaboration

had the least favourable responses. These findings provide valuable insights into the usability

and functionality of the application and serve as a guide for future developments. The study

highlights the potential of Lab Container to revolutionise computer science education by making

programming assignments much less tedious and providing a foundation for future research in

this area. The team is committed to continue improving the application and making it more

user-friendly for all users.



References

[1] Person, P. Paul, and R. Ramsden, “Learning to teach in higher education: Paul Ramsden, Paul

Ramsden: T,” Taylor & Francis, 05-Dec-1991. [Online]. Available:

https://www.taylorfrancis.com/books/mono/10.4324/9780203507711/learning-teach-higher-educ

ation-paul-ramsden-paul-ramsden. [Accessed: 05-Feb-2023].

[2] A. Leite and S. A. Blanco, “Effects of Human vs. Automatic Feedback on Students’

Understanding of AI Concepts and Programming Style.” [Online]. Available:

https://arxiv.org/pdf/2011.10653.pdf. [Accessed: 06-Feb-2023].

[3] B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, and C. Zander, “Pair programming in

education: A literature review.” [Online]. Available:

https://www.tandfonline.com/doi/abs/10.1080/08993408.2011.579808. [Accessed: 05-Feb-2023].

[4] R. E. Mayer, “Teaching and learning computer programming: Multiple research perspec,”

30-Sep-2013. [Online]. Available:

https://www.taylorfrancis.com/books/mono/10.4324/9781315044347/teaching-learning-compute

r-programming-richard-mayer. [Accessed: 05-Feb-2023].

[5] R. I. N. T. U. BISWAS and B. Deans, “Here's what we learned about Page Speed,”

Backlinko, 08-Oct-2019. [Online]. Available: https://backlinko.com/page-speed-stats. [Accessed:

24-Dec-2022].

[6] Gulati, N., & Higgy, A., & Timorabadi, H. (2022, August), Work In Progress: CodeCapture:

A Tool to Attain Insight into the Programming Development Process Paper presented at 2022

ASEE Annual Conference & Exposition, Minneapolis, MN. https://peer.asee.org/40663



Appendix

Appendix A: Preliminary Test Results

Scaled usability and functionality scores based on the survey results. The scores are scaled to be

in the range of 0-100, and the averages are calculated and shown in the last row of the table. The

first round of testing was done with 5 participants.

Participant Scaled Usability Score Scaled Functionality Score

1 47.5 56.25

2 80 71.875

3 80 59.375

4 62.5 68.75

5 65 68.75

Average 67 65



Appendix B: Preliminary Test Open-ended Question Feedback

The feedback from the preliminary test participants regarding the two open-ended questions in

the Feedback Survey



Appendix C: Second-Round Testing Results
Scaled usability and functionality scores based on the second round of survey results. The scores

are scaled to be in the range of 0-100, and the averages are calculated and shown in the last row

of the table. The first round of testing was done with 30 participants.


