2023 Annual Conference & Exposition NRLELEICULIIIE RIS
Baltimore Convention Center, MD | June 25 - 28, 2023 Education for 130 Years

Paper ID #37489

Introducing Internet-of-Things (IoT) — A Remote Approach

Dr. Samia Tasnim, The University of Toledo

Samia Tasnim, PhD, is an Assistant Professor in the department of Electrical Engineering and Computer
Science at the University of Toledo. She received her M.S. and Ph.D. degrees, along with the presti-
gious dissertation year fellowship award, in Computer Science from Florida International University. Her
research interests include Internet of Things (IoT), mobile computing, security, and data mining. Ap-
plication domains include smart cities, intelligent transportation networks, healthcare and environment
monitoring.

©American Society for Engineering Education, 2023

Teaching Internet-of-Things (IoT) — A Remote Approach

Samia Tasnim
Department of Electrical Engineering and Computer Science
The University of Toledo
Toledo, OH, USA

Samia.Tasnim @utoledo.edu

Abstract

There has been rapid growth in internet-of-things (IoT) over the last few years. According to
grand view research, the IoT market value will reach $933.62 billion by 2025. Moreover, the
number of connected devices will become 1 trillion by 2025, per HP’s report. To prepare the
students to be well aware of these novel technologies, we need to update our curriculum and
course design. In this paper, I present some laboratories (labs) that the students conducted as a
part of a course project in the ubiquitous computing class. This course is an elective for
undergraduate Computer and Information Sciences or Information technology students. The
students who take this course are either juniors or seniors. Covid-19 has taught us how remote
teaching is useful to ensure proper education during the time of the pandemic. This project aims
to design different lab modules that the students can conduct without purchasing hardware. I
designed this course at the time of covid pandemic to ensure student learning and success in an
economical way. I devised multiple assignments that helped the students to conduct hands-on lab
using a remote simulation tool (e.g., Tinkercad). The end-of-the-semester positive student reviews
support the success of the course design.

1 Introduction

Internet of things (I0T) is a system that connects people and devices (e.g., sensors, smartphones,
wearables) anytime and anywhere. The fast-growing [oT system has influenced and materialized
many industries, such as smart cities, smart grid, smart healthcare, and so on. Kevin Ashton first
coined the term Internet of Things as “refers to scenarios where network connectivity and
computing capability extends to objects, sensors and everyday items not normally considered
computers, allowing these devices to generate, exchange and consume data with minimal human
intervention” [1].

According to grand view research, the IoT market value will reach $933.62 billion by 2025.
Moreover, the number of connected devices will become 1 trillion by 2025, per HP’s report. To
prepare the students to be well aware of these novel technologies, we need to update our
curriculum and course design for courses such as: Ubiquitous Computing and Mobile Computing.

Analog signal Sampled signal Quantized signal Digital signal
xit) x[n] xglt) X t\J[rr]

=

n

Figure 1: Analog, sampled, quantized and digital Signals [2].

In this paper, I present some laboratories (labs) that the students conducted in the ubiquitous
computing course.

Large universities such as: Stanford University, University of Urbana Champaign, University of
California Irvine, University of California Sandiego, and Florida International University, among
others have recently introduced new courses or even a degree programs on Internet of Things. In
every university or college, offering a new program or course might not be feasible due to
resource constraint (e.g., limited faculty to cover the courses). But, like our approach, an existing
CSE or IT or CIS course curriculum can be modified to include the emerging IoT concepts. As a
results, the students will be well aware of these novel technologies and become a deserving
candidate in the job market or for graduate studies.

One of the objectives of this course is to give students the ability to identify the sensors and other
devices needed for different ubiquitous IoT solutions. In addition, they get to know about the
analog and digital system in detail. The students learns the basic elements of IoT, and Iot
programming with arduino.

The paper is organized as follows. I provide the background information in Section 2. Next, in
Section 3 I discuss in detail two laboratories. In section 4, semester-end student comments are
presented. Finally, Section 5 concludes the paper.

2 Background

2.1 Analog and Digital Data

In real-world, there are myriad examples of signals. Such as: the variation in air pressure when
we speak, the daily highs and lows in temperature, and the periodic electrical signals generated by
the heart [2]. In the past, we had analog signals only. But, now because of the advent of
communication and wireless technology digital signals are more prominent. In physical world we
see analog signals but the [oT devices understand in terms of digital. Thus, analog to digital
conversion is a core educational component.

Some important concepts related to the analog and digital conversions are described as
follow.

» Sampling — converts the continuous signal into a series of discrete analog signals at periodic
intervals.

* Quantization - each discrete analog is converted into one of a finite number of (previously
defined) discrete amplitude levels

* Encoding — discrete amplitude levels are converted into digital code

2.2 10T Sensors

Sensing is core component of the [oT. There are various applications of IoT such as: environment
monitoring [3, 4], agriculture, healthcare, air quality monitoring, traffic surveillance [5], smart
home, etc. Different human, environment or objects are sensed for the better realization of the
experimental environment and to make intelligent decisions.

In environmental sensing, different sensors are deployed to sense various environmental
properties (e.g., humidity, temperature, and ozone) [6, 7, 8, 9]. The sensors are mounted on top
of different vehicles (e.g., bicycle, bus, private car, and tram) or carried by a human being, which
change their positions very frequently and unpredictably. Moreover, sensors have been used for
IoT-based air quality monitoring applications [10, 11, 12].

A sensor is a device that receives a stimulus and responds with an electrical signal (voltage,
current) [13]. Some examples of stimulus include: motion, velocity, pressure, temperature, sound,
among others. To better apprehend the existing ot devices and design future smart applications
that deals with different sensors, proper understanding of sensors is necessary. This course aims
to introduce the students into IoT sensors. Arduino is the most popular IoT device development
platform and will be used in the laboratories. More details is presented in the next section.

3 Lab Instructions

In this section, I present the detailed description of two labs that I designed for the ubiquitous
computing course. This course (3 credits) does not have additional lab hours, so the students
conduct the labs during the regular class time of one hour fifteen minutes. The students are
provided additional days outside the lab hours to write the report and submit.

3.1 Analog to Digital Lab

Tinkercad Circuits is a browser-based program. It allows one to design and simulate circuits at
free of cost that in the same way it would have behaved if implemented using hardware (e.g.,
breadboard, wire, sensors, etc.).

3.1.1 Procedure Details

A student should log in to tinkercad [14] using personal gmail account. Then click the “New”
button, and from the options select circuit. Clicking on the top left text allows one to rename the
project. It is advisable to give a proper name that insinuates the purpose of the project. Students
are recommended to append their name at the end of the project name as well.

Step 1: Circuit Building

.
] AnalogDigital_Alice !
8 '«

«- 20 @- —- [N code

Figure 2: Circuit View of the Analog to Digital Lab.

A student can choose from different circuit components that are located at the top right corner of
the browser. First one needs to click on the components drop down menu to select the desired
component, and then drag it to the middle of the project workspace. For this lab, we will be using
two arduino circuits named as “Digital Signal Read” and “Analog Signal Read” in the components
list. After incorporating the above mentioned components, the circuit will look similar to Fig. 2.
The tinkercad website allows one to zoom in or out the workspace area by simply using the
mouse roller ball. Zoom out is very helpful when the circuit contains multiple components.

Step 2: Printing to the Serial Monitor With Blocks

(1) We will utilize the code blocks editor for listening to an Arduino input pin. Next, the analog
value or digital state will be print out in the Serial M onitor window. To open the code panel, a
student needs to click the “Code” button.

(ii) Next, s/he is asked to click on the Serial Monitor which is located at the bottom of the code
panel.

(iii) To run the Arduino code, s/he should click “Start Simulation, and observe the numbers in
the Serial Monitor during the interaction with the potentiometer. As the potentiometer input value
changes by moving the pointer on the dial, the serial output value will change accordingly. Since
the circuit includes two independent Arduinos, students can click back and forth between the two
Arduinos while the simulation is running in Tinkercad Circuits. However, the output in the serial
monitor will reflect whichever Arduino was selected at the beginning of the simulation start. For
example, while interacting with the potentiometer, only the analog circuit (lower one in Fig. 2)
will display output in the serial monitor. In contrast, if the student clicks on the upper arduino
before clicking the StartSimulation button, s/he will notice the serial monitor starts displaying
0 (the default digital output when push button is not pressed) on the serial monitor. As soon as
s/he presses the push button, the serial monitor will print 1 and then go back to the default O
State.

Graph Output: Tinkercad allows to visualize the circuit output data in graph format. Though,

B Serial Monitor

‘ ‘ Clear m

Figure 3: Serial Monitor and Graph Output of digital data read circuit.

1500

750

0L

Figure 4: Graph Output of Analog data read circuit.

for printing value in the graph, the serial monitor print should not contain any characters, only
numbers are allowed. This is a limitation of the graph showing option.

Fig. 3 displays the simulation output of the “digital signal read” (Top Arduino of Fig. 2). The
output displayed 1 when the push button was pressed. The graph reflects the serial monitor
values. On the other hand, Fig. 4 displays the graph output reflecting difference potentiometer
values. The output value range is [0,1023]. Definitely, the output graph will vary based on the
potentiometer interaction during the running the simulation. We will explain the reason behind
this data range in the next section.

(iv) In Fig. 5 (a), we can see different options available under the “Blocks” section. Navigate to
the Output code category, then drag out a “print to serial monitor” block and place it just before
the serial block that is already in the program. A student can change the default text to label the
Serial data, such as “Sensor Value: ”, and from the dropdown menu either choose to print with or
without a new line. Please note, in case of Fig. 4, the default block code has been used, where a
number is printed on the serial monitor. In contrast, after the code block configuration as shown
on 5 (b), the serial monitor output looks similar to Fig. 6. A student can stack similar serial blocks
in any future project for printing useful relevant feedback messages, as well as append relevant
comment blocks.

Step 3: Arduino Code

In Fig. 5, only the “Blocks” drop down menu is selected under the “Code” editor. In this step, the

Blocks ~ ¥ 20

@ Output @ Control
@ 'nput @ Math
@ nNotation @ Variables

play speakeronpin 0 » with tone (&
tumn off speaker on pin 0 ¥ 50Tt read the input on analog pin O:

. e -
LS netlo world R PRAPRIBISSISM AnalogReadSsrialnReads an analog input (poten...)| = [EEEElE to read analog pin AD
setRGBLEDinpins 3+ 6w I’ (LT EN N print out the value you read:

dthe input log pin 0
COmmEnE print to serial monitor EEEGEEIRGENTES without » newline

set sensorValue =+ fo readanalogpin AD v

printto LCD 1+ (@Reut] U print out the value you read

configure LCD 1 v typeto [2C (MCI E

print to serial monitor sensorvalue with * newline

print to serial monitor ~ sensorValue with » newline

1
set position on LCD 1 = to column (@i
y I—

(@) (b)

Figure 5: Using Code Block for Output Configuration (a) Default scenario, and (b) Reconfigure
by prepending “Sensor Value: .

student will explore the “Blocks + Text” drop down item. After s/he clicks on the “Blocks + Text”
option, the arduino code will be made visible beside the code block, as shown in Fig. 7. Please
note, the Arduino code is auto generated while the block items were added in the “Blocks” view.
The first function in the code section, named setup() as shown on Fig. 7 and Fig. 8, a variable
“INPUT” is created to hold the state of the input. To enable the message sending feature, an
Arduino requires opening a new communication channel. That is being done in the Serial.begin()
in line 22 and line 17 of Fig. 7 and Fig. 8, respectively. The argument of this function defines the
communication speed. In this case, the transmission speed is 9600 baud (1 baud = 1 bit per
second).

Inside the loop() method, corresponding input data is read and assigned to the declared variables.
In Fig 7, the input is read from the analog pin A, and assigned to the variable sensorV alue. In
contrast, in Fig. 8, the input is read from the digital pin 2, and then assigned to buttonState.
Inside the arduino, the analog pins are names Ag, Ay, ..., As. Tinkercad allows “Code” only
option as well where none of the “Blocks” are used. However, only “Code” option is out of the
scope of this course.

Step 4: Code Debugger

Like state-of-the-art integrated development environments (IDEs), Tinkercad circuits provides the
programmers an option to debug their code. It allows to step through the code and peek into
variables while the simulation is going on. To enable the debugger, the student needs to select
either Block+Text mode or Text only option from the dropdown list. The, s/he needs to click on a
line number for adding a break point (e.g., line 28 in Fig. 9). Then, while the simulation is
running, the debugger will stop at that particular line each time through the loop. S/he has to
hover over the variables to peek the values during the pause time.

"B Serial Monitor

Sensor Value: 859
Sensor Value: 859
Sensor Value: 859
Sensor Value: 859
Sensor Value: 941
Sensor Value: 941
Sensor Value: 941
Sensor Value: 1823
Sensor Value: 16823
Sensor Value: 1823
Sensor Value: 1823
Sensor Value: 1823
Sensor Value: 1823

Figure 6: Serial Monitor output of Analog data read circuit post code block reconfiguration.

Blocks + Text - + AA - 2 (Arduino UnoR3) ~
@ Output @ Control J/ c++ code
@ Input @ Math ﬁf
@ Notation @ Vvariables ZnalogReadSerial

Reads an analog input (potentiometer) en pin O,
prints the result to the serial menitor.
setbuiltin LEDto HIGH =

@ b R

OPEN THE SERIAL MONITOR TO VIEW THE OUTPUT FROM
TEE POTENTIOMETER >>

a9

setpin 0+ to HIGH =
Bttach the center pin of a potentiometer to pin
20, and the outside pins to +5V and ground.

setpin 3«

rofate servoonpin 0+ to o degi I
EE U £ naiogReadSerialinReads an analog input (paten...
1

play speakeronpin 0 + with fone {3
1

This example code is in the public demain.

Rl

int sensorValue = 0;

void setup()

pinMode (A0, INPUT);
Serial.beqgin(9§00);

turn off speakeronpin 0 v H

PR read the input on analog pin 0:

sel sensorValue ¥ fo read analogpin AQ ¥

LR orint out the value you read:

void loop ()
print to serial monitor {

II

// zead the input on amalog pin 0:

sensorValue = analcgRead (&0);
setRGBLED inpins 3 v 6w print to sarisl ’"“"""' without ¥ newline // print out the value you read:
Serial.print ("Senscr Value: ");

print to serial monitor sensorValie with ¥ newline Serial.println(sensorvalue);

delay(10); // Del little bit t lati
configure LCD 1 » fypeio I2C (MCI elay (10) elay a 1i e bit to improve simulatil

Figure 7: Block and Text View of Analog Circuit.

// C++ code

204
(VRPN DigitalReadSerial \ninReads a digital input o] 3/
4 DigitalReadSerial
5
& Reads a digital input on pin 2, prints the
7 result to the serial memitor
U read the input pin g
S This example code iz in the public domain.
o *
sel buftonStale = 1o read digitalpin 2 = if d
LS print out the state of the button]l'f st butteaState = 0;
3
print to serial monitor buttonStale with » newiine ig eildl mEam (i)
1le pinMode (2, INPUT);
17 Serial.begin(8600);
18| }
18
20 wvoid loop()
21| {
22 // read the input pin
23 buttonState = digitalRead(2);
24 // print out the state of the button
25 Serial.println(buttonState);
26 delay({10); // Delay a little bit to improve simulati
2704

Figure 8: Block and Text View of Digital Read Circuit.

int sensorValue = 0;
void setup ()
{

pinMode (A0, INPUT};

Serial.beqgin (9600} ;

Ty Thgorrmesnput on analog pin O:
sensorValue = analocgBead (20);
/f print out the wvalus you read:
Serial.print ("Senscr Value: "};
Serial.println(sensor¥alue) ;
delay{10); // Delay a little bit to improve simulati

Figure 9: Debugging the SensorValue variable.

3.1.2 Deliverable

After completing the lab following the above-mentioned instructions, a student needs to submit a
document (word/pdf) using designated learning management system (LMS), such as: blackboard,
canvas, etc, that will include the following items:

(a) A short description (4/5 sentences) on what is an Arduino (use internet search).
(b) Screenshot of the block and code section.

(c) 3 screenshots of serial monitor values based on the variation of potentiometer and
push-button.

A Student can include his/her designed circuit link. To do so, s/he needs to click the button
SendT o (located beside start simulation), after that click Invitepeople and finally click the
copylink option on the tinkercad.

3.2 Temperature Sensor Lab

In this lab assignment, the students will get familiarized with a temperature sensor, which has
myriad applications in real-world starting from healthcare or body temperature measurement

[15, 16] to agriculture [17, 18] and environment monitoring [3, 8]. A student needs to login to
tinkercad and create a new circuit similar to the instructions mentioned at the beginning of section
3.1.1.

3.2.1 Procedure Details

The step by step instructions for completing the temperature sensor lab is mentioned as
follows.

Step 1: LED Circuit Building

This lab will incorporate more components than the previously discussed analog to digital lab. To
better arrange multiple components and to ensure that they are connected properly, a student will
use a breadboard in this lab.

(1) First one needs to click on the components drop down menu to select the desired component,
and then drag it to the middle of the project workspace. For this lab, we will be fetching an
Arduino Uno and breadboard (under Arduino components, first item named as breadboard) from
the components panel to the workplace. Here, the 5 volt and ground pins on the Arduino are
connected to the power (+) and ground (-) rails on the breadboard by wires. As a general practice,
black wire is used for connecting to ground, and red colored wire for connecting to the 5V.
Tinkercad allows one to change the default wire colors by making a color selection from the color
dropdown menu. Alternatively, after selecting the wire one can type a number, then the
corresponding color from the dropdown list will be direcly reflected on the selected wire.

(i1) The student needs to drag three LEDs and place them on the breadboard in row D, spaced 2
breadboard sockets apart. The placement row can vary, the current placement is advised for
proper spacing. Generally, the LED id is assigned as 1,2, etc. It is advised to rename 1 as LED;.
Similar to wires, the student can change the LED color using the inspector that pops up while
clicking on the LED.

(111) Next, s/he should use a resistor to connect each LED’s cathode (left leg) to the ground rail
(black) of the breadboard. In Tinkercad Circutis, a student can change a resistor’s value by
highlighting it and using the dropdown menu in the inspector. The default resistance value is 1£¢2,
for this experiment the student should update the resistance value to 220¢2.

(iv) Finally, the student needs to connect the three LED anodes (right, longer legs) to digital pins
4, 3, and 2, respectively on the Arduino. The LED anode (+) is the terminal that current flows
into. On the other hand, the cathode (-) is the source terminal of current and connected to the
ground rail of breadboard.

Step 2: Adding Temperature Sensor

(1) The student needs to drag the temperature sensor from the component lists and place on the
row D (same row as the LEDs) of the breadboard. The search option facilitates finding a desired
item from the component list in a time-efficient manner.

(i1) The temperature sensor (TMP36) has three legs, hovering on each leg of the sensor, s/he will
understand the functionality of that particular leg. The left leg is connected to power, middle one
to Voltage output, and right leg is connected to ground. Thus, a red wire is used to connect the left
leg to the 5V rail on the breadboard, and black wire to connect the right leg of the sensor with the
ground (-) rail. The middle leg is connected to the Ay analog pin of the Arduino. Similar to the
Analog read circuit of Fig. 2, the changing voltage is input from the temperature sensor to the
Arduino.

(i11)) When a student clicks on the start simulation, a panel appears on top of the temperature
sensor, that allows to change the temperature value (similar to a regulator). In this case, the
temperature range is [-40°C, 125°C] . A temperature sensor creates a changing voltage signal

Figure 10: Circuit View of the Temperature Sensor Lab.

depending on the temperature it senses. This temperature sensor model (TMP36) is a good option
because of it’s capability of generating output voltage directly proportional to the sensed
temperature in degree Celsius.

After incorporating the above mentioned components, the circuit will look similar to Fig. 10. In
addition to the circuit view, tinkercad allows one to observe the schematic diagram. Fig. 11 shows
the schematic view of the circuit developed in the temperature sensor lab.

Arduino has a built-in Analog- to-Digital Converter (ADC). The five analog pins A0O to A5 can
interpret voltages between[0V, 5V], and translate that voltage to a value between [0, 1023].

Step 3: Block Code

(1) We will utilize the code blocks editor for listening to an Arduino input pin. Next, the analog
value (temperature sensor read data in terms of celcius and Farenheit) will be print out in the
Serial Monitor window. Also, the LEDs will lit up based on the temperarute sensor value. To
open the code panel, a student needs to click the “Code” button.

(i1) Click the “Code” button to open the code editor. Then the student needs to use the block
option from the dropdown menu. This project will utilize more complex blocks with logic and
math functions in comparison to the Arduino to Digital lab. To enhance the readability of the
program, a student is encouraged to include the comment option available under the “Notation”
blocks.

(ii1) Next, different useful variables are created by clicking on the “Variables” menu. The student
needs to create three variables for this lab, named baselineTemp, celsius and fahrenheit. Please
note, the naming is upto the programmer. A student needs to use the set variable block whenever
a value needs to be assigned to a user declared variable. First, s/he needs to assign the value 20 to
baseline Temp. The celsius variable is used for storing the temperature sensor data in Celsius unit.

Figure 11: Schematic View of the Temperature Sensor Lab.

The temperature range is [-40, 125]. From Math category, a student needs to drag out a “map”
block, and nest two arithmetic blocks (“1 + 1”’) within its first field. Then, to match with the
temperature sensor’s input range, s’he needs to adjust the range from -40 to 125. The student
needs to drag drag out “read analog pin AO” block from the input category, and place it into the
first arithmetic field inside the “map” block. After that, s/he needs to adjust the arithmetic blocks
to “(read analog pin AO - 20) x 3.04”.

(iv) The default unit of temperature sensor is Celsius. As we know, in the USA Farenheit is used
for temperature measurement, we will incorporate a coversion from celsius to farenheit and print
values in both units on the serial monitor. For that, the student needs to use set block and some
arithmetic blocks to read “set fahrenheit to (celsius x 9)/5 + 32”.

(v) Tinkercad allows to implement if else conditions inside the block editor. For this lab, we will
categorize the temperature values (in Celsius) into five ranges and based on that decide which
LED to turn on. For implementing this, a student needs to first click the Control category and
drag out an if then block, then navigate to Math and drag a comparator block onto the if block.
From the Variables category, s/he will drag the “celsius” and the “baselineTemp” variablea into
the comparator block, adjusting the dropdown so it reads “if celsius j baselineTemp then”. The
three LEDs are connected to three digital pins (D2, D3 and D4 in Fig 11). Thus, the student has to
add three digital output blocks inside the if statement to set pins 2, 3, and 4 LOW for this
temperature value condition.

(vi) One can select a block to copy and paste in tinkercad. The student can use this feature to save
sometime. S/he can copy the if else blocks of previous step and paste 4 time inside the code
blocks. As shown in Fig. 12, When the temperature is greater than or equal to the baselineTemp
and less than baselineTemp+10, the condition is set to light up only pin 2’s LED. When the
temperature is between baselineTemp+10 and baselineTemp+20, then will light up two LEDs. On
the otherhand, when the sensed temperate is greater than or equal to baselineTemp+20, then all
three LEDs will turn on. That is being implemented by making the digital output of pin 2, 3 and 4
changing to state “HIGH”.

il et threshold lempersture (o acivate LEDs
sel bossineTerp + 1o ()

comment. (R e

sl o=~ b map madaabgpn A+ -+ @) *+ @D o @ @

gl comvert ta Fahrenheit

sl mhecrete o cosis <o @) - @ - D

print fo serkal monitor without = neafine

print 1 gl ot o without = newine

print o serial moritoe fshrenheit without +
print o seria moritcr @) witn = newine

celsius v baselineTerp

Figure 12: Block view of the Temperature Sensor Lab.

C++ code

[¥]

w

int baselineTemp = 0;

celsius = 0;

T
s
=]
ot

int fahrenheit = 0;

void setup()

{
pinMode (RO, INEUT);
Serial.begin(9600);
pinMode (2, OUTEUT):
pinMode (3, QUIEUT):
pinMode (OUTEUT) ;

}

woid loop()
20 {// set threshcld temperature to activate LEDs

21 elineTemp = 20;
37 =

fahr

Serial.print{celsius);

Serial.printc(" C, "):

Serial.print(fahrenheit);

Serial.println{" F");

if {celsius < baselineTemp) |
digitalWrite (2, LCW):
digitalWrite LW ;
digitalWrite LOE) ;

if {celsius >= baseline && celsius < baselineTemp + 1
digitalWrite(2,
digitalWrite(3,
digitalWrite (4,

if {celsius »>= baselineTemp + 10 =& celsius < bagelineTemp + 20) {
digitalWrite (2, HIGH):
digitalWrite
digitalWrite (4

if {celsius »>= baselineTemp + 20 && celsius < baselineTemp + 30) {
digitalWrite (2
digitalWrite(
digitalWrite

if {celsius >= baselineTemp + 30) {
digitalWrite
digitalWrite
digitalWrite

'

delay(l

millisecond (s}

i

Figure 13: Codesnippet of the Temperature Sensor Lab.

D Serial Monitor

Figure 14: Serial monitor output of temperature sensor data.

Step 4: Arduino Code

In Fig. 12, only the “Blocks” drop down menu is selected under the “Code” editor. In this step, the
student will explore the “Blocks + Text” drop down item. After s/he clicks on the “Blocks + Text”
option, the arduino code will be made visible beside the code block, as shown in Fig. 13.

(1) At the beginning of the code, specifically in line 3, 4, and line 7, three variables are declared
and initialized with the value 0.

(ii) The first function in the code section, named setup() as shown on line 11 of code snippet, a
variable “INPUT” is created to hold the state of the input. To enable the message sending feature,
an Arduino requires opening a new communication channel. That is being done in the
Serial.begin() in line 12. Input and output pins are configured using the pinMode() function.
Arduino Pin AO is configured as an input for listening to the electrical state of the temperature
sensor. On the otherhand, in line 13-15, Pins 2, 3, and 4 are configured as outputs to control the
LEDs.

(ii1) Different conditions for turning on LEDs and temperature conversion from celsius to
farenheit are defined inside the loop() funcion. On line 21, the baselineTemp variable is assigned
with 20, which is the threshold value for the first LED to turn on. Based on the program
requirements, these values can be changed accordingly. The temperature unit conversion function,
Eq. 1, is implemented on line 25. Then the temperature values stored in the variables celsius and
farenheit are printed on the serial monitor by appending “C” and “F” respectively.

(iv) Five if conditions categorize the celsius value and depending on the true condition, the digital

pins 2,3, and 4 state is assigned. For example, when the celsius value is less than 20°C, the digital
output value for all three pins is LOW. If celsius value is in the range of greater than 20°C, but
less than 30°C, then pin 2 becomes HIGH causing the connected LED to turn on in line 36. In
line 40, the condition (temperature greater than equal to 30°C and less than 40°C) for turning on
two LEDS connected to pin 2 and 3 is implemented.

C (F-32)
5 9 M

3.2.2 Deliverable

After completing the lab following the above-mentioned instructions, a student needs to submit a
document (word/pdf) using designated learning management system (LMS), such as: blackboard,
canvas, etc, that will include the following items:

(a) Describe the functionality of a breadboard. Summarize your experience.
(b) Screenshot of the block and code section.
(c) 3 screenshot of output.

A Student can include his/her designed circuit link. To do so, s/he needs to click the button
SendT o (located beside start simulation), after that click Invitepeople and finally click the
copylink option on the tinkercad.

4 Student Comments

At the end of the semester, a student survey was conducted to get their feedback regarding this
Ubiquitous Computing course. In response to the question "What did you like the best about this
course?”, one student answered “I liked the TinkerCAD assignments that demonstrated the
functionality of circuits. I think they gave me a good appreciation for some of the fundamentals of
embedded systems and [oT.” Some other student responses to this question are as follows.
“developing real world work™,“The professor really helped us in anyway she could.”

Next, the students were asked “Did you understand what was expected of you in this course?”. In
response to this question, 50% replied Extremely well, 25% Well and 25% reasonably well. As a
reply of the question “Were you adequately prepared in the prerequisite course to take this course
77, 50% response was Extremely Well, 25% replied Well and 25% students responded poorly.

5 Conclusions

In this paper, I presented some laboratories that the students conducted using a remote simulation
tool: Tinkercad. The pedagogical approach of remote teaching was briefly described and its
effectiveness was assessed through a survey. The end-of-the-semester positive student reviews
support the success of the course design. Even though, students could experiment numerous
interesting 10T applications in Tinkercad utilizing varied sensors , there are some advanced
sensors (e.g., particle sensor) that are still unavailable in tinkercad. The basic understanding of

IoT and sensors that were taught in this course well-prepares students to take advanced courses
(e.g., Senior Design) in their future studies. For example, in senior design course when they get
some funding for hardware purchase, they can enhance the designs implemented in this course

and implement for a senior design.

References

[1] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview. internet
society,(october), 53,” 2015.

[2] A. Ambardar et al., Analog and digital signal processing. PWS BOSTON, MA, 1995.

[3] S. Tasnim, N. Pissinou, and S. Iyengar, “A novel cleaning approach of environmental
sensing data streams,” in 2017 14th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pp. 632633, IEEE, 2017.

[4] Y. Tang, S. Tasnim, N. Pissinou, S. Iyengar, and A. Shahid, “Reputation-aware data fusion
and malicious participant detection in mobile crowdsensing,” in 2018 IEEFE International
Conference on Big Data (Big Data), pp. 4820-4828, IEEE, 2018.

[5] S. Tasnim, J. Caldas, N. Pissinou, S. Iyengar, and Z. Ding, “Semantic-aware
clustering-based approach of trajectory data stream mining,” in 2018 International
Conference on Computing, Networking and Communications (ICNC), pp. 88-92, IEEE,
2018.

[6] O.S.D. H.J.J.Li, B. Faltings and J. Beutel, “Sensing the air we breathe.”
http://www.opensense.ethz.ch/trac/, May 2012.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A vision,
architectural elements, and future directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645-1660, 2013.

[8] M. A. Alswailim, H. S. Hassanein, and M. Zulkernine, “A reputation system to evaluate
participants for participatory sensing,” in 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1-6, IEEE, 2016.

[9] P. Kulkarni and P. Kute, “Internet of things based system for remote monitoring of weather
parameters and applications,” Int. J. Adv. Electron. Comput. Sci, vol. 3, no. 2, pp. 68-73,
2016.

[10] S. A. A. Elmustafa and E. Y. Mujtaba, “Internet of things in smart environment: Concept,
applications, challenges, and future directions,” World Scientific News, vol. 134, no. 1,
pp- 1-51, 2019.

[11] GSMA, “Air quality monitoring using iot and big data.”
https://www.gsma.com/iot/wp-content/uploads/2018/02/iot_clean_air_02_18.pdf, Accessed
January 2023.

[12] S. Tasnim, A. Ferguson, B. Gordon, C. Gordon, K. Ahmed, and 1. Mkpong-Ruffin, “A smart
environment monitoring application for mobile internet of things,” in Proceedings of the

27th International Conference on Systems Engineering, ICSEng 2020, pp. 223-233,
Springer, 2021.

[13] T. Inaoka, H. Shintaku, T. Nakagawa, S. Kawano, H. Ogita, T. Sakamoto, S. Hamanishi,
H. Wada, and J. Ito, “Piezoelectric materials mimic the function of the cochlear sensory
epithelium,” Proceedings of the National Academy of Sciences, vol. 108, no. 45,
pp- 18390-18395, 2011.

[14] Autodesk, “Tinkercad.” https://www.tinkercad.com/dashboard, Accessed January 2023.

[15] A. H. Kioumars and L. Tang, “Wireless network for health monitoring: heart rate and
temperature sensor,” in 2011 Fifth International Conference on Sensing Technology,
pp- 362-369, IEEE, 2011.

[16] H. Mansor, M. H. A. Shukor, S. S. Meskam, N. Q. A. M. Rusli, and N. S. Zamery, “Body

temperature measurement for remote health monitoring system,” in 2013 IEEE International

conference on smart instrumentation, measurement and applications (ICSIMA), pp. 1-5,
IEEE, 2013.

[17] Z. Dong, F. Li, B. Beheshti, A. Mickelson, M. Panero, and N. Anid, “Autonomous real-time

water quality sensing as an alternative to conventional monitoring to improve the detection
of food, energy, and water indicators,” Journal of Environmental Studies and Sciences,
vol. 6, pp. 200-207, 2016.

[18] L. Garcia, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “lot-based smart irrigation
systems: An overview on the recent trends on sensors and iot systems for irrigation in
precision agriculture,” Sensors, vol. 20, no. 4, p. 1042, 2020.

