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WIP: Replication of a 1/5th-Scale Autonomous Vehicle to Facilitate 
Curriculum Improvement in Cyber Engineering 

 
 
1. Background and Motivation 

To respond to the industry trend and the recent nationwide initiative for producing engineering 
professionals in the cyber domain, our university launched an undergraduate degree program in 
cyber engineering three years ago. Cyber engineering combines the fundamentals of computer 
engineering, cryptography, and cybersecurity techniques to design, incorporate, and secure systems 
across the digital landscape. This includes, but is not limited to, embedded technology, autonomous 
technology, edge and end-point technologies. Compared to cybersecurity in general, however, 
cyber engineering still requires further refinement in its curriculum coverage. The current 
curriculum for the cyber engineering program at our university is centered on cyber physical 
systems (CPS) and their security including device-level security, boot security, and attack-resilient 
hardware/middleware. As an engineering curriculum, cyber engineering also requires a variety of 
hands-on laboratory-based learning as well. To better facilitate hands-on learning in a curricular 
setting, we have been developing a 1/5th-scale autonomous vehicle as a framework of cyber 
physical systems for a set of cyber engineering courses. For the development, we have adopted an 
existing 1/5th-scale autonomous vehicle known as AutoRally [1] which was developed as a high-
performance testbed for self-driving vehicle research and funded by DARPA in mid-2010. 

 
When we began our effort in late 2021, however, due to the nature of rapidly advancing 

products in embedded systems, sensors, and computing technologies, it quickly became clear that 
numerous parts used in AutoRally had already been discontinued and our effort to replicate it as a 
CPS platform encountered a series of challenges although much documentation and a detailed parts 
list were available. Having spent more than a year since then to find alternative comparable parts, 
construct the mechanical and electrical subsystems, and configure them as needed, our CPS 
platform is nearly ready for its initial field test on a football field. The overall development efforts 
have provided us with a great deal of insights on how we may apply our learning during the 
development phase to the curriculum improvement in cyber engineering. In this paper, we present 
details of our effort in developing a 1/5th-scale electric autonomous vehicle as a CPS platform from 
an AutoRally years after the DARPA project was completed. Also, using our cyber engineering 
curriculum as an example, we present a set of mappings of technical coverage between the CPS 
platform and core courses in cyber engineering.  

 
2. Overview of 1/5th Autonomous Vehicle Platform 

Figure 1 shows (a) the key components of our CPS platform and (b) the current shape of a 
completely assembled car ready for a field test. The key components are largely grouped into the 
chassis and the compute box. The chassis holds an electronic box and an electric speed controller 
(ESC) as well as sensors and batteries (not shown in the figure); the compute box contains a 
custom-built computer running on the Linux operating environment, a power board for DC-DC 
conversion from the batteries, and various sensors and electronic devices such as IMU, cameras, 
Wi-Fi modules, to name a few.  

 



 
(a) Top view of key subsystems 

 
(b) Side view of the platform for a field test 

Figure 1. A 1/5-scale autonomous vehicle under development as a Cyber Physical System (CPS) platform 

 
For an autonomous vehicle that is battery-powered and electronically controlled for operation, 

the initial development of AutoRally began with converting the gasoline engine of a 1/5th-scale 
remote-control (RC) car into an electric engine. A step-by-step guide to construct the chassis of 
AutoRally is available in [2]. Since, as one of the challenges we encountered, however, the RC car 
with the gasoline engine was discontinued, we chose an RC car with an electric engine [3] for our 
further modification and development in reference to the step-by-step guide for the chassis of 
AutoRally. For the construction of a computer box, we followed a step-by-step guide in [4] as well 
as the software setup instructions [5], the operational procedure [6], and the configuration 
instructions in [7]. These documents served as very useful references for our development effort 
but also to some extent, due to a set of new off-the-shelf devices replacing obsolete ones, gathering 
additional information on our own was necessary. Below we present a summary of our activities 
and additional learning or clarifications needed to complete key tasks, while pointing to the 
referenced sources of the information as much as appropriate to avoid repeating the same 
instructions in this paper.    

 
3. Key Activities for a Successful Development 

3.1. Chassis 
To operate the chassis with the battery, it was necessary to construct a capacitor pre-charge 

circuit according to the chassis instructions (pp. 6-9, [2]). For this, however, the battery leads were 
not altered but, instead, IC5 connectors with proper current ratings were used. This pre-charge 
circuit with an additional resistor in series with the capacitor is to prevent a spark from occurring 
when plugging in the batteries. The following shows a list of subsequent steps to complete the 
chassis:  

• With the Castle Serial Link and Castle Link software downloaded from the Castle 
homepage (castlecreations.com), configure the ESC and Castle Serial Link device 
according to the instructions (pp. 36-37, [2]) 



• Configure the Futaba transmitter according to the instructions (pp. 35-36, [2]) and verify 
that the transmitter connects to the receiver. 

• Connect the motor, ESC, receiver, transmitter, and batteries; calibrate the ESC according to 
the Castle ESC manual on line [8].  

• Construct the Protoshield Assembly (pp. 37-45, [2]) and the Electronics Box circuit (p. 46, 
[2]). This step required much effort and time for accuracy and troubleshooting.  

• With the code for the Arduino Due (i.e., autorally_chassis.ino) downloaded onto the device 
and perform minor tweaking for a simple remote-controlled operation in a lab setting, 
verify that the transmitter successfully switches between auto and manual using the buttons 
on the transmitter. 

 
3D printing of the electronics box base (2 pieces), the electronics box lid (2 pieces), and the 

relevant support pieces was done with Fusion. Installing the electronics box components such as 
Protoshield assembly, multiplexer, relay, Castle serial link device, and receiver into the separate 
halves of the electronics box base was straightforward as well as mounting the Electronics Box on 
the chassis frame. 3D-printing the magnet holders (x4), hex adapters (x4), front hall mounts (x2), 
and rear hall mounts (x2), and testing the hall effect sensors was based on the instructions (pp. 24-
28, [2]) although our parts were slightly different. As for the amount of time and effort on this 
development phase, all of this work was performed by a master-level graduate student for a period 
of about 2 months.  

 
3.2. Compute Box 
Compared to the construction of the compute box, the work on configuring the compute box 

was much more challenging for our development team of 2 master-level graduate students. For the 
compute box operation on the CPS platform, another Linux-based computer is required for the 
remote control and configuration purposes, which is referred to as the Operator Control Station 
(OCS) laptop. A summary of our activities to initially construct the compute box is provided below.  

• Construction of a custom-built (mini-ITX form factor) computer running on the Linux 
operating environment. 

• 3D printing of parts with Fusion for the compute box base and lid, giving attention to 
various mounting hole diameters for specific inserts; 3D printing of GPU cover/holder, 
microcontroller holder, and GPS box/lid. 

• Construction of all cable assemblies (pp. 28-46, [4]), keeping cables longer than specified 
in the manual to allow for error during testing and ease of installation. 

• Download Teensyduino [9]; construct the Run-stop Box (pp. 46-49, [4]); load the 
corresponding Arduino file onto the Teensy-LC; also load the other Teensy-LC board with 
the camera trigger Arduino file. Note that these Arduino files are available on a specific file 
path once the software tools [7] are downloaded and installed on the Linux-based computer 
in the compute box.  

• Connect the power switch assembly, the hot swap board, the 2-pin power connector, and 
the power supply board. For lab testing, all other cables were disconnected from the power 
supply board and a lab power supply is used to apply ~22.6V to the 2-pin connector (Refer 
to Step ‘e’ (p. 85, [4]). Once the power supply board has been successfully powered with 
the lab power supply, follow steps ‘f’ through ‘l’ (pp. 85-87, [4]). 



• Once successful, connect the rest of the compute box components per the “Installation and 
Routing” instructions (p. 50, [4]). It should be noted that the lab power supply must be able 
to supply at least 6 amps to allow the compute box to turn on and run at full load.  

 
For the configuration of the CPS platform following the instructions in [5] and [7], the software 

setup is necessary on both the compute box and the OCS laptop and some other configuration steps 
are required only on one of the computers. The complete configuration steps can be summarized in 
the following 20 steps [7] - 1. Install Tools; 2. Configure IP addresses and ssh permissions; 3. 
Clock synchronization setup (chrony and gpsd); 4. Set roscore to auto start; 5. Set AutoRally 
udev rules; 6. Setup Compute Box Data Drive; 7. Change Power Button Behavior; 8. Disable 
Login and Lock Screen Password Prompts; 9. Setup on-board sensors; 10. Install M4api and 
Configure Cutoff Voltage; 11. Setup Cameras; 12. Configure XBees; 13. Configure GPS; 14. 
Configure Chassis Microcontroller; 15. Configure Compute Box Microcontroller; 16. Configure 
Run-stop Microcontroller; 17. Configure and Calibrate IMU; 18. Configure GPU; 19. Configure 
Platform-Agnostic Launch System; and 20. Verification.  

 
Among these steps, some of the major challenges we encountered were for cameras, XBees, 

and GPS. For the cameras, the links provided in the instructions manual were obsolete and no 
longer active. The difficulty in configuring XBees was primarily due to the global shortage of the 
semiconductor devices and thus the availability of a specific model, XBee-PRO 900HP (S3B), and 
lack of instructions for other models of XBees for possible application to our CPS platform. The 
difficulty in configuring the GPS device was that the GPS device available and acquired in Jan. 
2022 (Hemisphere GNSS P/N 940-4137-10 Phantom 34 Module) for our CPS platform was 
outputting the GNSS position data, e.g., with a prefix of $GNGNS, while the GPS device used in 
AutoRally and its instructions (Hemisphere Eclipse P307 GPS) was outputting the GPS positioning 
data, e.g., with a prefix of $GPGNS. Also, the AutoRally code was filtering out all $xxGNS 
messages other than $GPGNS. Errors were cleared once $GNGNS messages were allowed to be 
processed by the code and some delay adjustments were made in reading the incoming GNSS data 
through the COM port since the udev rules for the GPS port didn’t work in our application.   

 
4. Relevance to Cyber Engineering Curriculum 

In the emerging field of cyber engineering, embedded systems play a key role in technological 
advances and engineering education. The configuration and operation of the CPS platform require 
fundamental knowledges and technical skills in the Linux operating environment and interfacing 
with embedded systems that are placed on the CPS platform for the purposes of autonomous 
driving. With direct access to all configuration details and operational aspects, our CPS platform 
has a great potential to contribute to improving the cyber engineering education. Below using our 
cyber engineering curriculum as an example, we provide a set of content mappings between the 
technical knowledges that the CPS platform presents for student learning and possible integration 
of them into the course coverage.     

  
Our BS program in cyber engineering requires 63 credit hours of major course work among 

124 credit hours for the degree. Table 1 shows a set of major courses for the curriculum, excluding 
mathematics, science, and liberal studies courses [10].  

 
 



Table 1. Major Courses in the Curriculum for BS in Cyber Engineering 

FRESHMAN 
Fall 

 
Spring 

3 Intro to Networks/CIS 290 
 

3 Digital Logic Design/ECE 140 
  

 
1 Digital Logic Design Lab/ECE 141 

  
 

3 Circuit 1/ECE 228 
  

 
1 Circuit 1 Lab/ECE 229 

  
 

3 Intro to C/C++/ECE 111 
  

 
1 Network Security Lab/CYSEC 101 

SOPHOMORE 
Fall 

 
Spring 

3 u-controller Applications with IoT/ECE 245 
 

3 u-controller Essentials for Cyber Appl/CYENG 225 
3 Data Structure and Algorithm/ECE 217 

 
3 Embedded OS Appl. Programming/CYENG 220 

JUNIOR 
Fall 

 
Spring 

3 Trusted OS/CYENG 312 
 

3 Tech Selective 
3 Intro to Cyber-physical Syst/CYENG 237 

 
1 Professional Seminar/ECE 380 

1 Project Experience/ECE 381 
 

3 Secured Embedded System/CYENG 350 
3 Test, Measurement, and Control/ECE 243 

 
  

SENIOR 
Fall 

 
Spring 

3 Tech Elective 1 
 

3 Technical Elective 2 
3 Senior Design I/ECE 357   3 Senior Design II/ECE 358 

 

In particular, the following CYENG core courses are relevant to the CPS platform and further 
development could be facilitated:  

• Embedded OS Appl. Programming/CYENG 220 
• Trusted OS/CYENG 312 
• Intro to Cyber-physical Syst/CYENG 237 
• Secured Embedded System/CYENG 350 
• Technical Selective -- Embedded Kernel and RTOS/ ECE 311 

Although two other sophomore-level classes, u-controller Applications with IoT/ECE 245 and u-
controller Essentials for Cyber Appl/CYENG 225 could also use the CPS platform, it is not 
envisioned for course improvement as acquiring the knowledge about micro-controllers and 
applications can be achieved with individual embedded systems devices.  
 

Embedded OS Application Programming/ CYENG 220 teaches the student how to architect an 
embedded Linux environment for a distributed co-operating multi-application environment. The 
course explores how to leverage the Linux programming, inter-process communication, and shell 
programming. Topics also include bootup, scheduling of applications, and load balancing across 
multiple cores. This course is a good fit to perform the configuration and operation of the OCS 
laptop as the CPS platform is configured via close communication between the compute box and 



the OCS laptop both running on the Linux environment and interacting with various embedded 
systems.  

 
Trusted OS/ CYENG 312 covers basic understanding and configuration for hardening and 

securing an embedded Linux operating system. Topics include boot-time configurations and 
forensics, user and directory hardening, application vulnerability minimization, and minimizing 
memory attacks. The course will focus on a common Linux distribution architecture, security 
modules, cryptography tools, and how the system works. The CPS platform can be the playground 
for applying the knowledges covered in this course in order to improve the security of the 
embedded systems on the platform as well as serve as the real-time system for improving student 
learning experiences in the course. 

 
Introduction to Cyber-Physical Systems/ CYENG 237 covers cyber and physical systems 

developed via high-level modeling and virtual/real prototyping using MATLAB/Simulink as well 
as real prototyping of an autonomous driving robot for advanced implementation and verification. 
Although not mentioned earlier, the operation of AutoRally and thus, the CPS platform can be 
simulated and verified in an autonomous driving simulator. The virtual/real CPS devices created in 
this course can be integrated into the CPS platform to re-enforce student learning with a small 
autonomous robot being currently used in this course via our CPS platform that is much more 
complex. 

 
Secure Embedded Systems/ CYENG 350 provides a hands-on approach of understanding 

cyber-attacks using only the processing power and memory of resource-constrained embedded 
devices, architecting and implementing a root of trust (RoT) embedded system from power-up, 
firmware launching, boot-loading, and applications following the various industry-trusted system 
paradigms. Although not directly related to configuration of the CPS platform, this course can use 
the CPS platform as a playground for students applying the knowledges covered in this course such 
as implementing and experiment with a root of trust. 

 
Embedded Kernel and RTOS/ ECE 311 covers basic understanding of embedded kernel and 

real-time operating system paradigms. Topics include process management, process 
synchronization, and memory management. For this course, embedded kernel topics can be 
implemented on the CPS platform serving as an embedded-system platform and RTOS topics can 
be easily implemented on the real-time operating systems of the OCS laptop and compute box of 
the CPS platform. 

 
The current instructions and hands-on learning in these courses are based on unit devices or 

relatively-simple, small-scale subsystems. Our CPS platform serves as a complete complex system 
for the primary functionality of autonomous driving with various subsystems and sensors 
integrated. As such, our CPS platform is considered to be an excellent framework for our project-
based courses and also improved student learning experiences. 

 
5. Concluding Remarks 

We have presented a summary of development effort to create a 1/5th-scale autonomous driving 
vehicle as the CPS platform for curriculum enhancement in our cyber engineering program. The 
primary technical challenges in our development arose from the fact that some of the key 



components of the vehicle became obsolete and/or discontinued. As such, part of the work done for 
the self-driving features of the original AutoRally required revision with much effort. In return, 
however, it provided us with an opportunity to acquire in-depth knowledges that can be applied to 
improving course coverage and thus curriculum in cyber engineering education. We hope that the 
information presented in this paper is useful to educators in cyber engineering in general as well as 
those in embedded and cyber physical systems intending to create a complex educational platform 
of hardware and software for their cyber/computer engineering curriculum. 
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