
Paper ID #37198

A Bayesian Approach to Longitudinal Social Relations Model

Xingchen Xu, Arizona State University

Hi, my name is Xingchen Xu, I go by Stars as my English name due to the fact that ”Xingchen” means
”Stars” in English. I’m a Ph.D. student at Arizona State University, majoring in Engineering Educa-
tion Systems and Design (EESD). Prior to Arizona State University, I earned my bachelor of science in
developmental psychology from the University of California, San Diego.

Li Tan

©American Society for Engineering Education, 2023



 
 

A Bayesian Approach to Longitudinal Social Relations Model  

Engineering education plays a crucial role in shaping the next generation of engineers 

and scientists (Agrawal & Harrington-Hurd, 2016; Brothy et al., 2008). Given its importance, 

research studies have sought practical ways to improve engineering education practices across 

multiple dimensions (Crawley et al., 2007; Litzinger et al., 2011; Pizarro, 2018). Among these 

efforts, there has been a long-lasting and ongoing focus on project- and team-based learning in 

STEM and engineering education research (Felder & Brent, 2016; Kolar & Sabatini, 1996; 

Wankat & Oreovicz, 2014). Researchers found that project- and team-based learning practices 

lead to favorable learning outcomes and behaviors, as well as effective cognitive and non-

cognitive knowledge and skills acquisition (Amelink & Creamer, 2010; Guo et al., 2020). Given 

the well-established evidence from the literature, teaching practices with a project- and team-

based learning centric have proliferated in STEM and engineering education in recent years 

(Chen et al., 2021; Guo et al., 2020).  

Studies have suggested that project- and team-based learning practices should emphasize 

establishing a continuous communication channel among students, as well as between students 

and instructors (Guo et al., 2020; Michaelsen & Sweet, 2011). Frequently, to facilitate and 

monitor the learning process, instructors have collected student peer-to-peer feedback and 

evaluation data within student learning teams (e.g., Arco-Tirado et al., 2011; Asghar, 2010; Gok, 

2012). Studies have consistently used the social relations model (SRM) to examine these student 

feedback and evaluation datasets. The SRM is a general conceptual and methodological 

framework to depict voluntary or involuntary interpersonal relationships and interactions 

between two or more individuals within groups (Lüdtke et al., 2013; Nestler et al., 2022). It is 

commonly used in education and psychology contexts to examine interpersonal behaviors across 

group members (e.g., Kwan et al., 2008), and it has broad applicability in engineering education 

research given the growing emphasis on team learning and collaborative project-based learning 

in the field (e.g., Loughry et al., 2014).  

Within team learning and collaborative project-based learning environments in 

postsecondary education, instructors often collect student data across multiple stages of the class, 

or even across multiple classes and semesters. For example, there is an abundance of longitudinal 

team learning data in engineering education (e.g., Layton et al., 2010; Loughry et al., 2014). 

Nevertheless, modeling these longitudinal relationships can be challenging, given the 

complications associated with data structures and subtle dynamic correlations between different 

elements. Previous studies in engineering education and other fields have applied the standard 

SRM to longitudinal social relations data (e.g., Buist et al.,2008; Malloy et al.,1995; Nestler et 

al., 2017). Notwithstanding, the standard SRM is developed based on cross-section data. Nestler 

et al. (2015) have shown that it has critical limitations when applied to longitudinal data, where 

we observe the same individuals across multiple periods.  

Motivated by the lack of available methods in analyzing the Longitudinal Social 

Relations Model (LSRM), in this paper, we use a Bayesian approach to design a general and 

flexible framework to bridge the gap by capturing the complexity of social relationships within 

student teams and gaining a deeper understanding of their underlying dynamics. This Bayesian 



 
 

LSRM is demonstrated on a simulated dataset, and the results show that this approach provides 

multiple advantages over existing approaches to handle longitudinal data. 

Background 

Round Robin Design   

The format of student feedback and evaluation data collected from team collaborations in 

engineering education settings usually coincides with a round-robin format, where each student 

within a particular team provides feedback to every other team member, as illustrated in Figure 

1. In this example, there are four students, students 1, 2, 3, and 4. Each student provides feedback 

to others, as the arrows show. Specifically, student 1 gives feedback to students 2, 3, and 4; 

meanwhile, student 2 provides feedback to students 1, 3, and 4; the same goes for students 3 and 

4.  

Figure 1 

An Example Illustrating Round-Robin Design with Four Participants 

 

The use of round-robin data in engineering education applications is often associated with 

the Comprehensive Assessment of Team Member Effectiveness (CATME) system (Layton et al., 

2010; Ohland et al., 2006). The CATME system is the peer evaluations system. It enables 

instructors to implement their projects to manage student groups better and help students with 

peer evaluations in team projects to improve the student's learning experience. It provides an 

automated process for instructors to collect and store student peer evaluation round-robin data 

with minimal required manual interventions. The CATME system has been used by over 1.4 

million students and 17,000 instructors, and it is prevalent among engineering instructors 

(Alsharif et al., 2022). Besides the CATME system, round-robin data has been collected and 

analyzed in many other scenarios related to STEM or engineering education settings (Hertz, 

2022).  

Social Relations Model and Estimation  

The SRM represents a class of models investigating dyadic relationships within a group 

of research subjects. While typically, dyadic relationships are defined as two-person interactions 

and ratings for human-subject studies, the SRM can be used for other studies where the research 

subjects are animals or organizations, etc. The SRM has wide applications in psychology, 

economics, education, and other social sciences; and has been reviewed as a canonical way to 

investigate interpersonal relationships data stemming from a round-robin design (e.g., Kenny & 

La Voie, 1984; Kwan et al., 2008; Lüdtke et al., 2013; Martin, 2013; Nestler et al., 2022).   



 
 

 To illustrate standard SRM with an example, consider a simple case where we have 

round-robin data consisting of reciprocal ratings within a group. To model the social relations 

underlying this data, a univariate SRM can be written as follows: 

𝑦𝑖𝑗 = 𝛼 + 𝑝𝑖 + 𝑡𝑗 + 𝑟𝑖𝑗 + 𝑒𝑖𝑗.                                                       (1) 

In equation (1), 𝑦𝑖𝑗 denotes the rating of individual j given by individual i, 𝛼 denotes the group 

mean, 𝑝𝑖 denotes the perceiver effect of individual i, and 𝑡𝑗 denotes the target effect of individual 

j. The perceiver effect, commonly also referred to as the actor effect, measures the extent to 

which individual i tends to think about others on average; while the target effect, commonly also 

referred to as the partner effect, measures the extent to which individual j tends to be viewed or 

evaluated by others on average. Furthermore, there is a relationship effect denoted as 𝑟𝑖𝑗, 

measuring the unique behavior, feelings, or liking from individual i toward individual j in 

particular, after marginalizing out the target and the perceiver effects. Note that the relationship 

effect is directional or asymmetric. That is, 𝑟𝑖𝑗 is not necessarily the same as 𝑟𝑗𝑖. Finally, the 𝑒𝑖𝑗 

denotes the error term, which can only be estimated and separated from the relationship when 

there are multiple measures or replications of the same construct in question (Kenny et al., 2006). 

Otherwise, 𝜀𝑖𝑗 is typically removed from the model (Lüdtke et al., 2013).  

Next, we rewrite equation (1) in dyadic terms for further illustration.  

(
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) = (

𝛼
𝛼
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There is evidence from the literature suggesting that the two individual-level factors, perceiver 

and target effects, are correlated with each other (Lüdtke et al., 2018; Schauf et al., 2022). 

Studies have frequently assumed a bivariate normal relationship between the two effects (e.g., 

Snijders & Kenny, 1999): 

                                                  (
𝑝𝑖
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0
0
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𝜎𝑝
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2 ]).                                        (3)                                      

In equation (3), 𝜎𝑝
2 means the perceiver variance that measures the degree of consistency in the 

perceiver's responses toward all their interaction targets. The target variance 𝜎𝑡
2 assesses the level 

of consistency in the target's responses toward specific perceivers. Additionally, 𝜌𝑝𝑡 denotes the 

perceiver-target correlation that indicates whether there is a relationship between a participant's 

perceiver effect and their target effect. 

 Moreover, studies have argued that there is generalized reciprocity between 𝜀𝑖𝑗 and 𝜀𝑗𝑖, 

suggesting a positive correlation between the two relationship factors between individuals i and j 

(Kenny et al., 2006). Again, assuming the relationship effects are jointly normally distributed, 

such correlation can be represented by the following equation:    
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In equation (4), 𝜎𝑟
2 measures the extent to which ratings are specific to a given combination of 

perceivers and targets, representing the variation caused by the interaction between perceivers 

and targets. 𝜌𝑟 denotes the correlation between 𝑟𝑖𝑗 and 𝑟𝑗𝑖. 

ANOVA Approach 

Analysis of Variance (ANOVA) refers to a class of statistical methods used to assess the 

average difference between two or more groups. Two-way ANOVA is a particular case of 

ANOVA to test the impact of two independent factors on a dependent variable. The purpose of 

this analysis is to establish if the interaction between these two factors exists and if they have an 

impact on the dependent variable. It has applications in estimating the SRM, because we can 

view perceiver and target effects as the two factors influencing the dependent variable (Lüdtke et 

al., 2013). Warner et al. (1979) first proposed a statistical measurement method for solving the 

variance and covariance parameters of SRM using ANOVA. Later, Schönbrodt et al. (2012) 

developed a library on the R programming language called TripleR for round-robin design to do 

estimate SRM with ANOVA. 

Although ANOVA is a commonly used method to estimate the parameter of SRM, the 

AVONA approach has multiple limitations when it comes to data processing (Kenny et al., 2006; 

Lüdtke et al., 2013; Nestler & Lüdtke, 2022). One of the primary limitations of ANOVA is that it 

requires additional procedures or assumptions to handle incomplete and missing data, and the 

absence of data can result in errors and even can cause severe inaccuracies between the 

ANOVA-determined final conclusions and the actual results (Roderick et al., 2002). Second, it is 

challenging to derive a significant test for SRM parameters due to complications associated with 

estimating standard errors for ANOVA estimators (Bond & Lashley, 1996; Lüdtke et al., 2013). 

Third, the ANOVA approach may generate negative variance values, and correlations with 

absolute values above 1, outside the parameter space (Lüdtke et al., 2013). Last but not least, it is 

challenging to estimate specialized models that go beyond the basic SRM using traditional 

ANOVA methods (Kenny, 1994; Kenny et al., 2006). For example, more complicated 

procedures are required when researchers seek to test if SRM parameters depend on 

demographic or personality factors (Card et al., 2005). 

Maximum Likelihood Estimation Approach 

Maximum likelihood estimation (MLE) is a statistical method used to estimate the set of 

parameters in a model that best fits the observed data. It starts with constructing a likelihood 

function, which maps the set of parameters in a model to a likelihood score representing the 

probability of observing the provided data given the parameters. Next, the maximum likelihood 

estimator refers to the parameter value that maximizes the likelihood score, which provides the 

most likely explanation for the observed data (Kenny et al., 2006; Wong, 1982). The SRM, 

defined in equations (1) – (4), can be embedded into a linear mixed model or structural equation 

model framework, and researchers have applied MLE to estimate the parameters of the SRM 

accordingly (e.g., Kenny et al., 2006; Nestler, 2016; Nestler et al., 2020). Studies have shown 

that MLE effectively mitigates the concerns and limitations of using the ANOVA approach 

(Kenny et al., 2006), and Nestler (2016) further provided evidence indicating that MLE 

generated more accurate results relative to the ANOVA approach with a simulated study. 



 
 

Despite the advocated benefits of using MLE to estimate SRM, it bears several 

limitations as well. First, the dataset used in SRM research often has a small sample size, and the 

sampling distribution of the dataset is often asymmetric, which causes the confidence intervals 

not to cover enough dimensions and will lead the results to be inadequate to represent the 

meaning of the model, which eventually leads to biased estimates of the variance components 

(Browne & Draper, 2006; McNeish & Stapleton, 2016). Second, similar to the last limitation of 

the ANOVA approach, it is challenging to use standard statistical software to assess the dyadic 

relationships in SRM in accordance with the maximum likelihood approach while incorporating 

covariates or multiple constructs structure into the model (Rasbash & Browne, 2008). 

Bayesian Approach 

Bayesian estimation is a statistical method that estimates the parameters of a model via 

Bayes' theorem. Bayes' theorem is a mathematical formula given in this simple formula:  

𝑝(𝜽|𝒀) ∝ 𝑝(𝒀|𝜽) ∗ 𝑝(𝜽).                                                 (5) 

In formula (5), we use the 𝒀 to denote the vector of the observed data, and 𝜽 to denote the vector 

of model parameters (e.g., 𝜌𝑝𝑡). Furthermore, 𝑝(𝜽|𝒀) denotes the posterior distribution, 

indicating the distribution of model parameters given the observed data; 𝑝(𝒀|𝜽) denotes the 

likelihood function, which quantifies the goodness of fit of a statistical model to a set of 

observed data; and 𝑝(𝜽) denotes the prior distribution, which represents our prior beliefs about 

the before taking into account any observed data. Bayesian estimation is conducted based on the 

posterior distribution 𝑝(𝜽|𝒀), which is proportional to the likelihood function 𝑝(𝒀|𝜽) times the 

prior distribution 𝑝(𝜽) according to Bayes' theorem (Gelman et al., 1995). Note the likelihood 

function in the Bayesian method is the same as the likelihood function in the MLE method, and 

if the prior distribution is a constant, the posterior distribution will be mathematically equivalent 

to the posterior distribution (Gelman et al., 1995).  

The Bayesian estimation approach involves specifying a prior distribution of the model 

parameters based on evidence or knowledge regarding these parameters, updating the prior based 

on observed data to derive a posterior distribution, and using the posterior to acquire model 

parameter estimators (Gelman et al., 1995). For example, commonly used parameter estimators 

include the mean and the mode from the posterior distribution (Rosenberg et al., 2022; 

Wagenmakers et al., 2018). Bayesian estimation is useful for problems where prior knowledge 

about the parameters is available, and it can handle complex models, missing values, and small 

sample sizes effectively (Levy, 2016). The use of Bayesian methods to estimate the SRM models 

has been long proposed and piloted in the literature (e.g., Gill & Swartz, 2007; Lüdtke et al., 

2013). Among these studies, Lüdtke et al.(2013) documented a procedure of leveraging Bayesian 

methods in estimating SRM and provided evidence to establish the validity and accuracy of their 

Bayesian method based on a simulated framework. The Bayesian estimation approach offers a 

reliable way to overcome the limitations of the ANOVA and MLE approaches (Helm et al., 

2016; Levy, 2016). One of the biggest strengths is that Bayesian methods provide a unified and 

straightforward way to estimate SRM parameters, which can then be adapted to more intricate 

models with covariates or multiple constructs. Another advantage of the Bayesian approach is 



 
 

that it relies on both the likelihood function and the prior distribution to make robust inferences 

about model parameters, even when the sample size is small. Lastly, the Bayesian approach is 

equipped to manage datasets that have missing values (Gill & Swartz, 2007; Levy, 2016; 

Rosenberg et al., 2022). Nevertheless, the advantages of the Bayesian method come with costs as 

well. The most notable limitation is the computational complexity: Bayesian models can be 

computationally intensive, especially for models like the SRM, where the number of parameters 

can be large (Lüdtke et al., 2013). Further, Bayesian models may struggle with issues including 

ill-posed priors, model convergence issues, and objective model selection issues as well 

(Wagenmakers et al., 2018). 

Earlier Approaches to Handle Longitudinal Social Relations Data  

Longitudinal social relations data refers to data collected over a period of time that 

examines changes in social relationships between individuals within groups, and can shed light 

on the stability and change in social relationships over time. Two genres of research methods 

have been used in the past to handle longitudinal social relations data: two-step and one-step 

approaches.  

Two-Step Approach  

As the name implies, the two-step approach handles the longitudinal social relations data 

through a two-step analysis. In the first step, the approach ignores the longitudinal information 

and treats the social relations in each time point as multiple cross-section datasets. These 

multiple cross-sectional datasets are separately modeled as independent SRM models, and the 

parameters, e.g., the target effects, are also estimated independent of the longitudinal 

relationship. In the second step, another statistical model, e.g., an autoregression time series 

model, is constructed to examine the intertemporal relationship across time, with the SRM 

parameters from the first step as model input.  

While the two-step approach has been frequently employed by existing studies to handle 

longitudinal social relations data given its intuitiveness and convenience (e.g., Lüdtke et al., 

2018; Nestler et al., 2015), it bears critical limitations. Most importantly, the model parameters 

estimated in the first step have estimation errors. However, it is practically impossible to 

properly take into account the estimation errors from the first step in the second step of the two-

step approach. Typically, studies using the two-step approach ignore this issue by treating the 

model parameters estimates from the first step as true population parameters, which eventually 

leads to inaccurate final results. Another limitation of the two-step approach is its inadequate use 

of available information from the sample. Longitudinal data measures the same individuals and 

groups over time, and this creates dependencies between the observations. Treating longitudinal 

data as cross-sectional data discards the temporal aspect of information, thus will lead to a loss in 

estimation accuracy of model parameters and limit the ability to make inferences. 

One-Step Approach  

To address the limitations of the two-step approaches, studies have proposed estimating 

longitudinal social relations data in a single statistical framework to properly account for the data 

dependencies across time (e.g., Nestler et al., 2017; Nestler et al., 2020; Nestler et al., 2022). 



 
 

Despite that one-step approaches have conceptual advantages and have the potential to be 

exceptionally useful for applied research, studies investigating this methodological issue have 

been sparse and only limited to frequentist perspectives. Two notable examples of one-step 

approaches include the Social Relations Growth Model (SRGM; Nestler et al., 2017) and the 

Social Relations Structural Equation Model (SR-SEM; Nestler et al., 2021). 

The SRGM, as presented by Nestler et al. (2017), is a combination of the SRM and a 

longitudinal mixed model (as seen in Verbeke & Molenberghs, 1997). It incorporates the 

longitudinal social relations data into a single model by imposing a restrictive modeling 

assumption that a time variable can be used to predict the linear growth of repeated evaluations 

between individuals in each dyad. Nestler et al. (2017) outline the variance-covariance matrix of 

this model and explain how its parameters can be calculated. Nestler et al. (2021) argued that the 

SRGM has limited practicality from a statistical modeling standpoint because it was created with 

a linear growth parametric assumption and cannot be used to explore alternative growth curve 

specifications or other more flexible settings.  

To improve on the limitations of the SRGM, Nestler et al. (2021) thereafter developed the 

SR-SEM, which, to our knowledge, represents the state-of-the-art of longitudinal social relations 

estimation. By integrating SRM with the structural equation models (SEM) framework, Nestler 

et al. (2021) discussed how longitudinal social relations data can be analyzed with MLE, and 

demonstrated the significantly improved estimation accuracy of the SR-SEM approach relative 

to a two-step approach with a simulation-based study.  

Method  

 In this study, we used a Bayesian method to improve the estimation accuracy of LSRM 

further relative to a standard two-step approach and the SR-SEM. Compared to MLE 

approaches, the Bayesian method may elevate estimation accuracy by the use of priors in the 

model. First, before having access to the data, researchers may have prior information regarding 

modeling parameters from earlier models, evidence from the literature, etc. Such information can 

be easily incorporated into a Bayesian model and facilitate the inference of modeling parameters 

(Gelman, 1995; Levy, 2016; Rosenberg et al., 2022; Wangenmakers et al., 2018). Furthermore, 

even when no prior information exists, the Bayesian method may still enhance estimation 

accuracy by the use of non-informative priors of the modeling parameters. This is because non-

informative priors can be used as a form of regularization in Bayesian models to prevent 

overfitting and improve generalization performance. A statistical model is said to have 

overfitting when it is too intricate and takes into account random fluctuations or idiosyncratic 

characteristics of the data, causing it to have poor prediction abilities on new and unseen data. 

Regularization, in Bayesian settings, shrinks large modeling parameter estimates towards zero 

(Burden & Winkler, 2009; Gelman, 1995; Polson & Scott, 2010). Basically, the Bayesian 

shrinkage effect toward large parameter estimates supported by substantial amount of data is 

minimal; while large parameter estimates derived from small sample sizes and uncertain data are 

treated skeptically. In summary, using non-informative priors as regularization in Bayesian 

models may prevent overfitting and improve the estimation accuracy. 



 
 

In addition to potentially improving estimation accuracy. Bayesian methods have other 

advantages as well when applied to LSRM. It is straightforward to incorporate covariates, e.g., 

demographic variables, into the model, and it handles missing data very well, which is quite 

common among student round-robin peer-evaluation datasets. Nevertheless, given the scope of 

this study, we do not examine and evaluate the other advantages of Bayesian methods and leave 

it for future research interests. 

Model Set Up 

 Next, we exemplify our Bayesian method by first setting up an LSRM structure. While 

our Bayesian approach is flexible and can be applied in many different LSRM settings, for 

presentational convenience, we only illustrate our method with a comparable autoregressive 

LSRM structure used in the simulation study of Nestler et al. (2021). 

 Similar to equations (1) and (2), the LSRM can be presented by the following equations 

(6) and (7), first in linear and then in matching dyadic forms: 

                                        𝑦𝑖𝑗𝑙 = 𝛼𝑙 + 𝑝𝑖𝑙 + 𝑡𝑗𝑙 + 𝑟𝑖𝑗𝑙 + 𝑒𝑖𝑗𝑙,                                               (6) 

                                   (
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Note that the same notations used in equations (1) and (2) are used in equations (6) and (7), with 

the difference being the subscript l, which denotes a particular time period when the social 

relations are assessed. The following equations (8) – (10) represent the autoregressive 

relationships among the target, perceiver, and relationship effects: 

𝑝𝑖𝑙 = 𝛽𝑝𝑝𝑖,𝑙−1 + 𝜀𝑝,𝑖𝑙,                                             (8) 

𝑡𝑖𝑙 = 𝛽𝑡𝑡𝑖,𝑙−1 + 𝜀𝑡,𝑖𝑙,                                                          (9) 

𝑟𝑖𝑗𝑙 = 𝛽𝑟𝑟𝑖𝑗,𝑙−1 + 𝜀𝑟,𝑖𝑗𝑙.                                                     (10) 

In equations (8) – (10), 𝛽𝑝, 𝛽𝑡, and 𝛽𝑟 denote the autoregressive parameters for the target, 

perceiver, and relationship effects, 𝜀𝑝,𝑖𝑙, 𝜀𝑡,𝑖𝑙, and 𝜀𝑟,𝑖𝑗𝑙 denote the autoregressive error terms 

when updating the modeling parameters from the previous time period into the current one. 

Finally, equations (11) – (15) define the variance and covariance structure of the error terms, 

again with very similar notations compared to equations (3)-(4): 
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We used the same notations in equations (3)-(4) and equations (11) – (12). Additionally, 𝜎𝜀𝑝
2 , 𝜎𝜀𝑡

2 , 

𝜎𝜀𝑟
2 , and 𝜎𝑒

2 respectively represents the variance of the perceiver effect updating error component, 

target effect updating error component, relationship effect between perceiver and target updating 

error component, and the random error component. 

A Simulation Study  

 In this simulation study, we test the performance of our Bayesian method against a 

standard two-step approach and the SR-SEM, in terms of modeling parameter estimation 

accuracy on the LSRM model defined in equations (6) – (15). 

Simulation Settings 

 The values of true modeling parameters are presented in Table 1. We used the same 

parameter values used in the simulation study conducted by Nestler et al. (2021). Note that in 

results omitted for brevity, we examined the performances of three estimation methods in various 

different parameter values, and observed no differences to our results qualitatively.  

Table 1 

Values of True Modeling Parameters 

Variable True Value Explanation 

𝛼𝑙 0 intercept 

𝜎𝑡 0.447 standard deviation of the target effect 

𝜎𝑝 0.316 standard deviation of the perceiver effect 

𝜎𝑟 0.775 standard deviation of the relationship effect 

𝜎𝑒 0.000 standard deviation of the random error component 

𝛽𝑡 0.700 autoregressive coefficient of target effect 

𝛽𝑝 0.500 autoregressive coefficient of perceiver effect 

𝛽𝑟 0.300 autoregressive coefficient of relationship effect 

𝜎𝜀𝑡
 0.391 standard deviation of target effect updating error component 

𝜎𝜀𝑝
 0.235 standard deviation of perceiver effect updating error component 

𝜎𝜀𝑟
 0.731 standard deviation of relationship effect updating error component 

𝜌𝑝𝑡 0.283 correlation between target and perceiver effects 

𝜌𝑟 0.167 correlation between reciprocal ratings 

 

  Next, we independently generate two sets of 1,000 datasets using equations (6)-(15) and 

the parameter values in Table 1. The first set of 1,000 smaller datasets each has 15 student teams 



 
 

with five students per team, and we observe ratings across four different time periods. The next 

set of 1,000 larger datasets each has 30 student teams with other settings identical. After 

generating the simulated datasets, we estimated the modeling parameters in Table 1 separately 

using our Bayesian method, the SR-SEM using the "srm" R package (Nestler et al., 2019), and a 

standard two-step model using the "TripleR" package (Schönbrodt et al., 2012). The estimation 

was iteratively executed for all 1,000 smaller and 1,000 larger datasets.  

We compare estimation accuracy and method performances along three dimensions: 

coverage, average bias, and Mean Squared Errors (MSE). Coverage is defined as the number of 

times the true parameter is within the estimated 95% frequentist or Bayesian confidence interval. 

Note that the perfect coverage value should be 95% instead of 100%. While a low coverage 

value is signaling poor estimation performance, a higher than 95% value is indicating that the 

constructed confidence interval is likely too wide. Next, we define average bias as 𝐵 =

∑ (𝐸𝑖 − 𝑇)𝑁
𝑖=1 /𝑁, where 𝐸𝑖 denotes the estimated parameter value for iteration i, 𝑇 denotes the 

true parameter value, and N is the number of total iterations, which equals 1,000 in our case. The 

average bias examines the systematic deviation between model estimates and the true value, and 

a small absolute value indicates good model performances. A model with high positive bias is 

indicative the model tends to generate overestimated values. Finally, the MSE, which is often 

regarded as the more important measure of estimation accuracy (Harvey et al., 1997), is defined 

as 𝑀𝑆𝐸 = √∑ (𝐸𝑖 − 𝑇)^2𝑁
𝑖=1 /𝑁. MSE measures how much error the model makes in its 

predictions, and penalizes models that make large errors for some predictions. A small MSE 

value indicates good model performance.  

Prior Distribution Settings for the Bayesian Method 

We present the prior distributions of all modeling parameters in Table 2. All prior 

distributions are non-informative priors typically used in related research applications (e.g., 

Lüdtke et al., 2013). Note that our results are robust to reasonable alternative prior settings based 

on multiple robustness checks, the results of which are available upon request from the authors. 

Table 2 

Prior Distributions 

Variable Prior Distribution Explanation 

𝛼𝑙 Normal (0, 1) intercept 

𝜎𝑡 Exponential (1) standard deviation of the target effect 

𝜎𝑝 Exponential (1) standard deviation of the perceiver effect 

𝜎𝑟 Exponential (1) standard deviation of the relationship effect 

𝜎𝑒 Exponential (1) standard deviation of the random error component 

𝛽𝑡 Normal (0, 1) autoregressive coefficient of target effect 

𝛽𝑝 Normal (0, 1) autoregressive coefficient of perceiver effect 

𝛽𝑟 Normal (0, 1) autoregressive coefficient of relationship effect 

𝜎𝜀𝑡
 Exponential (1) standard deviation of target effect updating error component 

𝜎𝜀𝑝
 Exponential (1) standard deviation of perceiver effect updating error component 



 
 

𝜎𝜀𝑟
 Exponential (1) standard deviation of relationship effect updating error component 

𝜌𝑝𝑡 LKJ (2) correlation between target and perceiver effects 

𝜌𝑟 LKJ (2) correlation between reciprocal ratings 

Note. Normal (0, 1) denotes normal distribution with mean 0 and standard deviation 1. Exponential (1) 

denotes exponential distribution with its parameter equal to 1. LKJ (2) denotes the Lewandowski-

Kurowicka-Joe (LKJ) distribution with its parameter equal to 2. Our results are robust to all tested 

reasonable alternative prior distributions. 

Results 

  We present our simulation results for the smaller and larger datasets in the two Panels of 

Table 3, respectively. While we offer results for all parameters from Table 1 except the intercept 

parameter, 𝛼𝑙, for completeness, we highlighted parameters with important practical meanings in 

bold, which are usually the focuses of the LSRM estimation. We omitted the intercept parameter 

for presentational convenience because it has few practical meanings, and we have multiple 

intercept estimates for each time period. Also, note that the standard deviation of the error 

components, 𝜎𝑒, cannot be estimated in the two-step model given its modeling assumptions 

(Lüdtke et al., 2013).  

 From Panel A, the most noticeable observation is that both the Bayesian and SR-SEM 

models produce strikingly better results relative to the two-step model, which can be explained 

by the erroneous modeling assumptions employed by the latter. The differences between the 

Bayesian and SR-SEM models are also significant. The Bayesian method generates coverage 

values that are much closer to 95%, indicating the confidence intervals generated by the 

Bayesian methods are considerably more reliable. In terms of average bias and MSE, while the 

SR-SEM generates compare estimates than the Bayesian method for some modeling parameters, 

the Bayesian approach produces substantially improved results for the standard deviation 

estimates of the relationship effect (𝜎𝑟), the autoregressive coefficient of the relationship effect 

(𝛽𝑟), the correlation between target and perceiver effects (𝜌𝑝𝑡), and the correlation between 

reciprocal ratings (𝜌𝑟). All our qualitative conclusions from Panel A holds for Panel B as well. 

Nevertheless, when the overall sample size has increased, the differences between the Bayesian 

and SR-SEM methods become smaller, due to the impact of the prior distribution being 

weakened with a larger sample. 

Table 3 

Simulation Results 

Panel A: 15 Teams 

Variable Bayesian SR-SEM Two-Step 

 Coverage Avg Bias MSE Coverage Avg Bias MSE Coverage Avg Bias MSE 

𝝈𝒕 0.955 -0.020 0.085 0.909 -0.014 0.075 0.289 0.108 0.119 

𝝈𝒑 0.935 -0.042 0.101 0.833 -0.022 0.118 0.000 0.174 0.178 

𝝈𝒓 0.880 -0.094 0.145 0.828 0.183 0.774 0.007 -0.140 0.144 

𝜎𝑒 0.810 0.108 0.157 0.803 0.098 2.350 NA NA NA 

𝜷𝒕 0.920 -0.018 0.060 0.874 -0.018 0.059 0.000 0.145 0.147 



 
 

𝜷𝒑 0.930 -0.044 0.075 0.838 -0.034 0.082 0.000 0.213 0.214 

𝜷𝒓 0.815 -0.125 0.164 0.803 0.187 0.788 0.000 -0.120 0.122 

𝜎𝜀𝑡
 0.930 -0.004 0.117 0.934 -0.002 0.117 0.034 -0.217 0.227 

𝜎𝜀𝑝
 0.980 0.001 0.174 0.869 -0.029 0.431 0.195 -0.174 0.185 

𝜎𝜀𝑟
 0.895 0.123 0.159 0.879 0.039 0.276 0.456 -0.068 0.080 

𝝆𝒑𝒕 0.950 -0.040 0.193 0.879 -0.020 0.428 0.960 0.013 0.060 

𝝆𝒓 0.950 0.081 0.124 0.783 0.004 0.328 0.134 -0.132 0.142 

 

Panel B: 30 Teams 

Variable Bayesian SR-SEM Two-Step 

 Coverage Avg Bias MSE Coverage Avg Bias MSE Coverage Avg Bias MSE 

𝝈𝒕 0.915 -0.011 0.056 0.909 -0.010 0.053 0.055 0.113 0.118 

𝝈𝒑 0.895 -0.046 0.090 0.884 -0.024 0.078 0.000 0.167 0.169 

𝝈𝒓 0.920 -0.062 0.095 0.909 0.234 1.492 0.000 -0.138 0.141 

𝜎𝑒 0.870 0.077 0.116 0.869 -0.068 0.243 NA NA NA 

𝜷𝒕 0.930 -0.005 0.036 0.914 -0.006 0.036 0.000 0.152 0.154 

𝜷𝒑 0.930 -0.027 0.057 0.904 -0.014 0.051 0.000 0.213 0.214 

𝜷𝒓 0.860 -0.087 0.115 0.848 0.232 1.501 0.000 -0.120 0.121 

𝜎𝜀𝑡
 0.925 -0.005 0.082 0.919 -0.002 0.082 0.006 -0.218 0.224 

𝜎𝜀𝑝
 0.960 -0.005 0.148 0.894 -0.007 0.234 0.028 -0.178 0.185 

𝜎𝜀𝑟
 0.905 0.071 0.097 0.889 0.013 0.212 0.193 -0.070 0.077 

𝝆𝒑𝒕 0.960 -0.015 0.135 0.939 -0.022 0.273 0.890 0.020 0.051 

𝝆𝒓 0.880 0.055 0.092 0.753 0.002 0.151 0.011 -0.130 0.135 

 

Conclusion 

In conclusion, this paper presents a Bayesian approach to the Longitudinal Social 

Relations Model (LSRM), providing a flexible and general framework to examine social 

relationships within student teams and understand their underlying dynamics. The Bayesian 

LSRM approach has been demonstrated on simulated data and compared to existing methods, 

namely a two-step approach and the SR-SEM. Results show that the Bayesian approach 

outperforms the alternatives, especially on a few key parameters. These findings contribute to the 

advancement of the LSRM, which opens the pathway to analyze a series of potentially impactful 

and policy-relevant questions in engineering education, for example, the drifts of peer evaluation 

accuracy among students across time.  

More broadly, the implications of this study extend to the CATME system users and 

other practitioners. For example, the LSRM may enhance the CATME system by accurately 

modeling longitudinal social relations data, and thereby improving the evaluation of team 

dynamics and identifying potential areas for improvement. Ultimately, this may help instructors 

better support their students' collaborative learning experiences and foster a more inclusive 

learning environment. 



 
 

References 

Agrawal, A. K., & Harrington-Hurd, S. (2016). Preparing next generation graduates for a global 

engineering workforce: Insights from tomorrow's engineers. Journal of Engineering 

Education Transformations, 29(4), 5-12. 

Alsharif, A., Katz, A., Knight, D., & Alatwah, S. (2022). Using Sentiment Analysis to Evaluate 

First-year Engineering Students Teamwork Textual Feedback. 2022 ASEE Annual 

Conference & Exposition. 

Amelink, C. T., & Creamer, E. G. (2010). Gender Differences in Elements of the Undergraduate 

Experience that Influence Satisfaction with the Engineering Major and the Intent to 

Pursue Engineering as a Career. Journal of Engineering Education, 99(1), 81–92. 

https://doi.org/10.1002/j.2168-9830.2010.tb01044.x 

Arco-Tirado, J. L., Fernández-Martín, F. D., & Fernández-Balboa, J.-M. (2011). The impact of a 

peer-tutoring program on quality standards in higher education. Higher Education, 62, 

773–788. 

Asghar, A. (2010). Reciprocal peer coaching and its use as a formative assessment strategy for 

first-year students. Assessment & Evaluation in Higher Education, 35(4), 403–417. 

Bond, C. F., & Lashley, B. R. (1996). Round-robin analysis of social interaction: Exact and 

estimated standard errors. Psychometrika, 61, 303–311. 

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in 

P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. 

Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods 

for fitting multilevel models. 

Buist, K. L., Reitz, E., & Deković, M. (2008). Attachment stability and change during 

adolescence: A longitudinal application of the social relations model. Journal of Social 

and Personal Relationships, 25(3), 429-444. 

Burden, F., & Winkler, D. (2009). Bayesian regularization of neural networks. Artificial neural 

networks: methods and applications, 23-42. 

Card, N., Hodges, E., Little, T., & Hawley, P. (2005). Gender effects in peer nominations for 

aggression and social status. International Journal of Behavioral Development, 29(2), 

146–155. 

Chen, J., Kolmos, A., & Du, X. (2021). Forms of implementation and challenges of PBL in 

engineering education: A review of literature. European Journal of Engineering 

Education, 46(1), 90–115. https://doi.org/10.1080/03043797.2020.1718615 

Crawley, E., Malmqvist, J., Ostlund, S., Brodeur, D., & Edstrom, K. (2007). Rethinking 

engineering education. The CDIO approach, 302(2), 60-62. 

Felder, R. M., & Brent, R. (2016). Teaching and Learning STEM: A Practical Guide. John 

Wiley & Sons. 

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman 

and Hall/CRC. 

Gill, P. S., & Swartz, T. B. (2007). Bayesian Analysis of Dyadic Data. American Journal of 

Mathematical and Management Sciences, 27(1–2), 73–92. 

https://doi.org/10.1080/01966324.2007.10737689 

https://doi.org/10.1002/j.2168-9830.2010.tb01044.x
https://doi.org/10.1080/03043797.2020.1718615
https://doi.org/10.1080/03043797.2020.1718615
https://doi.org/10.1080/01966324.2007.10737689


 
 

Gok, T. (2012). The effects of peer instruction on students' conceptual learning and motivation. 

Asia-Pacific Forum on Science Learning and Teaching, 13(1), 1–17. 

Guo, P., Saab, N., Post, L. S., & Admiraal, W. (2020). A review of project-based learning in 

higher education: Student outcomes and measures. International Journal of Educational 

Research, 102, 101586. 

Guo, W., & Kim, J. H. (2020). How Augmented Reality Influences Student Workload in 

Engineering Education. In C. Stephanidis, D. Harris, W.-C. Li, D. D. Schmorrow, C. M. 

Fidopiastis, P. Zaphiris, A. Ioannou, X. Fang, R. A. Sottilare, & J. Schwarz (Eds.), HCI 

International 2020 – Late Breaking Papers: Cognition, Learning and Games (pp.388–

396). Springer International Publishing. https://doi.org/10.1007/978-3-030-60128-7_29 

Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean 

squared errors. International Journal of forecasting, 13(2), 281-291. 

Helm, J. L., Castro-Schilo, L., & Oravecz, Z. (2017). Bayesian versus maximum likelihood 

estimation of multitrait–multimethod confirmatory factor models. Structural Equation 

Modeling: A Multidisciplinary Journal, 24(1), 17–30. 

Hertz, J. L. (2022). GRUEPR, a software tool for optimally partitioning students onto teams. 

Computers in Education Journal, 12.  

Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. Guilford Press. 

Kenny, D. A., & La Voie, L. (1984). The social relations model. In Advances in experimental 

social psychology (Vol. 18, pp. 141-182). Academic Press. 

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). The analysis of dyadic data. New York, NY: 

Guilford Press. 

Kenny, D. A., West, T. V., Malloy, T. E., & Albright, L. (2006). Componential Analysis of 

Interpersonal Perception Data. Personality and Social Psychology Review, 10(4), 282–

294. https://doi.org/10.1207/s15327957pspr1004_1 

Kolar, R. L., & Sabatini, D. A. (1996). Coupling team learning and computer technology in 

project-driven undergraduate engineering education. Technology-Based Re-Engineering 

Engineering Education Proceedings of Frontiers in Education FIE'96 26th Annual 

Conference, 1, 172–175 vol.1. https://doi.org/10.1109/FIE.1996.569937 

Kwan, V. S., John, O. P., Robins, R. W., & Kuang, L. L. (2008). Conceptualizing and assessing 

self-enhancement bias: a componential approach. Journal of personality and social 

psychology, 94(6), 1062. 

Layton, R. A., Loughry, M. L., Ohland, M. W., & Ricco, G. D. (2010). Design and Validation of 

a Web-Based System for Assigning Members to Teams Using Instructor-Specified 

Criteria. Advances in Engineering Education, 2(1). https://eric.ed.gov/?id=EJ1076132 

Levy, R. (2016). Advances in Bayesian modeling in educational research. Educational 

Psychologist, 51(3–4), 368–380. 

Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering education and 

the development of expertise. Journal of Engineering Education, 100(1), 123-150. 

Loughry, M. L., Ohland, M. W., & Woehr, D. J. (2014). Assessing Teamwork Skills for 

Assurance of Learning Using CATME Team Tools. Journal of Marketing Education, 

36(1), 5–19. https://doi.org/10.1177/0273475313499023 

https://doi.org/10.1007/978-3-030-60128-7_29
https://doi.org/10.1207/s15327957pspr1004_1
https://doi.org/10.1207/s15327957pspr1004_1
https://doi.org/10.1109/FIE.1996.569937
https://doi.org/10.1109/FIE.1996.569937
https://eric.ed.gov/?id=EJ1076132
https://eric.ed.gov/?id=EJ1076132
https://doi.org/10.1177/0273475313499023
https://doi.org/10.1177/0273475313499023


 
 

Lüdtke, O., Robitzsch, A., Kenny, D. A., & Trautwein, U. (2013). A general and flexible 

approach to estimating the social relations model using Bayesian methods. Psychological 

Methods, 18, 101–119. https://doi.org/10.1037/a0029252 

Lüdtke, O., Robitzsch, A., & Trautwein, U. (2018). Integrating Covariates into Social Relations 

Models: A Plausible Values Approach for Handling Measurement Error in Perceiver and 

Target Effects. Multivariate Behavioral Research, 53(1), 102–124. 

https://doi.org/10.1080/00273171.2017.1406793 

Malloy, T. E., Sugarman, D. B., Montvilo, R. K., & Ben-Zeev, T. (1995). Children's 

interpersonal perceptions: A social relations analysis of perceiver and target effects. 

Journal of Personality and Social Psychology, 68(3), 418. 

Martin, J. J. (2013). Benefits and barriers to physical activity for individuals with disabilities: a 

social-relational model of disability perspective. Disability and rehabilitation, 35(24), 

2030-2037. 

McNeish, D. M., & Stapleton, L. M. (2016). The effect of small sample size on two-level model 

estimates: A review and illustration. Educational Psychology Review, 28, 295–314. 

Michaelsen, L. K., & Sweet, M. (2011). Team-based learning. New Directions for Teaching and 

Learning, 128(128), 41–51. 

Nestler, S., Robitzsch, A., & Luedtke, O. (2019). SRM: Structural equation modeling for the 

social relations model. R package version 0.3-6. 

Nestler, S. (2016). Restricted maximum likelihood estimation for parameters of the social 

relations model. Psychometrika, 81(4), 1098–1117. 

Nestler, S., Geukes, K., Hutteman, R., & Back, M. D. (2017). Tackling longitudinal round-robin 

data: A social relations growth model. Psychometrika, 82, 1162-1181. 

Nestler, S., Grimm, K. J., & Schönbrodt, F. D. (2015). The social consequences and mechanisms 

of personality: How to analyse longitudinal data from individual, dyadic, round–robin 

and network designs. European Journal of Personality, 29(2), 272-295. 

Nestler, S., Lüdtke, O., & Robitzsch, A. (2020). Maximum likelihood estimation of a social 

relations structural equation model. Psychometrika, 85(4), 870–889. 

Nestler, S., Lüdtke, O., & Robitzsch, A. (2022). Analyzing longitudinal social relations model  

data using the social relations structural equation model. Journal of Educational and 

Behavioral Statistics, 47(2), 231–260. 

Ohland, M., Pomeranz, H. R., & Feinstein, H. W. (2006). The comprehensive assessment of 

team member effectiveness: A new peer evaluation instrument. 2006 Annual Conference 

& Exposition, 11–1262. 

Pizarro, N. A. B. (2018). Using Research projects in the classroom to improve Engineering 

education. In 2018 IEEE Frontiers in Education Conference (FIE) (pp. 1-7). IEEE. 

Polson, N. G., & Scott, J. G. (2010). Shrink globally, act locally: Sparse Bayesian regularization 

and prediction. Bayesian statistics, 9(501-538), 105. 

Rasbash, J., & Browne, W. J. (2008). Non-hierarchical multilevel models. Handbook of 

Multilevel Analysis, 301–334. 

Roderick, J., Little, A., & Rubin, D. B. (2002). Statistical analysis with missing data. 

https://doi.org/10.1037/a0029252
https://doi.org/10.1037/a0029252
https://doi.org/10.1080/00273171.2017.1406793


 
 

Rosenberg, J. M., Kubsch, M., Wagenmakers, E.-J., & Dogucu, M. (2022). Making sense of 

uncertainty in the science classroom: A Bayesian approach. Science & Education, 31(5), 

1239–1262. 

Schauf, T., Dufner, M., Nestler, S., & Rau, R. (2022). Do agency and communion explain the 

relationship between perceiver and target effects in interpersonal perception? A meta-

analysis on generalized reciprocity. Personality and Social Psychology Bulletin, 

01461672221107205. 

Schönbrodt, F. D., Back, M. D., & Schmukle, S. C. (2012). TripleR: An R package for social 

relations analyses based on round-robin designs. Behavior Research Methods, 44, 455–

470. 

Snijders, T. A. b., & Kenny, D. A. (1999). The social relations model for family data: A 

multilevel approach. Personal Relationships, 6(4), 471–486. 

https://doi.org/10.1111/j.1475-6811.1999.tb00204.x 

Verbeke, G., & Molenberghs, G. (1997). Linear mixed models for longitudinal data. Springer. 

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, 

Q. F., Šmíra, M., & Epskamp, S. (2018). Bayesian inference for psychology. Part I: 

Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25, 

35–57. 

Wankat, P. C., & Oreovicz, F. S. (2014). Teaching engineering (ed.). West Lafayette, Indiana: 

Purdue University press. 

Warner, R. M., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for 

social interaction data. Journal of Personality and Social Psychology, 37(10), 1742. 

Wong, G. Y. (1982). Round robin analysis of variance via maximum likelihood. Journal of the 

American Statistical Association, 77(380), 714–724. 

 

 

https://doi.org/10.1111/j.1475-6811.1999.tb00204.x

