
Paper ID #36998

Graphics Library to Aid Student Learning of Object-Oriented Programming

Mr. Thomas Rossi, Penn State Erie

Thomas Rossi is a lecturer in Computer Science and Software Engineering at Penn State Behrend. His
research focuses on improving the post-secondary experience for students through the use of current com-
puting tools and technologies. Thomas graduated with his MS in Computer Science from the University
of New Hampshire in 2016.

Mackenzie Sloan
Ryan Joseph Pape

©American Society for Engineering Education, 2023

Graphics Library to Aid Student Learning of Object-Oriented
Programming

 Abstract

One of the fundamental paradigms early Computer Science / Software
Engineering classes seek to teach students is object-oriented
programming. Typically this is done using Java, an object-oriented programming
language. Part of Java is JavaFX, a graphics library that allows programmers to
create graphical applications using Java. While it would be beneficial to use this
graphics package to help demonstrate object-oriented concepts, a student starting
out with Java will not have the necessary knowledge to implement this package in
their programs. This paper discusses a JavaFX based graphics library students
can easily use with little to no prior experience coding in Java to get exposed to
object-oriented concepts in a graphical way.

One library that was of particular interest in the development of this library
was the Wheels library created by Sanders and van Dam and was an easy way for
students starting out learning object-oriented programming to create graphical
programs with little to no previous programming knowledge. This library was
built on the AWT graphics package which limited the number of shapes that were
available to students as well as the color pallet they could easily pick from. This
creates an issue as Wheels was based off AWT it is now obsolete as AWT has
been replaced by JavaFX.

The new library detailed here, named WheelsFX, is a Java library that is based
off the current JavaFX graphics library. It is designed to wrap JavaFX in a much
more approachable set of methods and objects that students can interact with
starting the first week of an object-oriented programming course. This means
students do not need to know concepts such as inheritance which is needed to
work with JavaFX.

Aside from ease of use, this library was also designed to be easily extensible
by heavily utilizing polymorphism and current best practices in programming
including the use of Maven for dependency management. This results in a
package that can be easily enhanced to add in additional functionality in the future
and easily redeployed to provide students the enhanced functionality in a timely
manner. This paper discusses a graphics library implemented in Java that
students can easily use with little to no prior experience coding in Java or object-
oriented programming to get exposed to object-oriented concepts in a graphical
way.

1.0. Introduction
One of the fundamental paradigms early Computer Science / Software Engineering classes

seek to teach students is object-oriented programming. There are many reasons why this is the
case, but amongst others are the fact that languages in this space generate code that is modular
and highly reusable [1]. Typically the language used to explore object-oriented in CS
curriculums is Java, a language developed by Sun Microsystems [2]. Due to its popularity, Java
was selected for our school’s sophomore object-oriented programming class.

While beneficial, students can have a hard time understanding this paradigm even with an

easy to use language like Java. Given that object-oriented programming entails many concepts
that are not physically tangible, students can have a hard time wrapping their minds around the
material. It is for this reason that many times graphics are used to teach object-oriented concepts
[3]. While Java does have graphical libraries built in, they are not the easiest to work with. The
original two, AWT and SWING come with steep learning curves. Tools such as Wheels [4]
abstract many of the pain points of working with AWT and SWING away from the programmer.
The programmer is instead provided with easy to work with classes representing the graphical
shapes, frame, etc. found in AWT and SWING. This allows for the use of graphics from
essentially day one of the course.

With time though, AWT and SWING have become antiquated which therefore makes

Wheels antiquated. JavaFX is a newer Java graphics package that is vastly superior since it
contains much better graphical rendering and is much more approachable than its predecessors.
Unfortunately, JavaFX still requires programmers to understand concepts such as inheritance to
get started which is less than ideal when working with students who may not have prior Java
programming experience or no programming experience at all. It would instead be favorable to
keep the simplicity of Wheels, but instead use the improved graphics found in JavaFX. In this
paper a new graphics library called WheelsFX will be discussed which combines the simplicity
of Wheels with the improved graphical capabilities found in JavaFX. This library is also being
created with the goal of being useable by individuals who are in their first week of a
programming course focused in object-oriented.

2.0. Background

2.1. Using Graphics to Teach Object-Oriented

The idea of using graphics to teach object-oriented concepts is not new, multiple papers have
been published on this topic. One such paper by Chen et al discusses how the Game framework
which contains some basic graphic and audio objects allowed them to help students bolster their
object-oriented knowledge in a way students found interesting [5]. While supportive of the idea
that graphics can be used to teach object-oriented programming, there are two main issues. The
first is that Game was used with C++ which is not what is used in the course the new package
must work with. The second, is the goal of this package is to be for general purpose graphics,
not specifically slanted towards games.

2.2. Wheels

As previously mentioned, Wheels was created by Sanders et al. Wheels serves as a wrapper
around the AWT and SWING packages that were developed for older versions of Java. It helps

deal with complexities found in these libraries for getting graphics on the screen making it very
beginner friendly. Users simply need to instantiate a frame and graphics objects, Wheels will
take care of the rest.

2.3. Other Graphics Frameworks
 In terms of ease of use for graphics, Wheels is not an anomaly. Turtle is a graphics
framework that is a part of the Python programming language. It was designed as a way of
introducing kids to programming [6]. Using straightforward functions, the “turtle” can be moved
around to draw both simple and complex shapes. Another programming language called Julia
used for applications in data analytics and AI [7] contains a graphics package that allows a user
to draw shapes on the screen. Despite the ease of use of these two packages, they do not apply
given they are not designed to work with Java which is what is used in our object-oriented
programming class. Moreover, the code for these packages is not object oriented, but rather is
more scripting in nature.

3.0. Implementation

Due to its ease of use and the fact it was already designed for Java, the Wheels framework
was used as the basis of the design for the new framework. While it was not possible to get the
original Wheels code, it was possible to get access to WheelsUNH used at the University of New
Hampshire. This package is very similar to Wheels save for some minor modifications. The
project started by examining the WheelsUNH source code and determining the changes that
needed to be made. Most of these changes centered around removing references to AWT and
SWING and replacing them with JavaFX, the new graphics package. On top of this, some
structural changes needed to be made to handle the differences between AWT and SWING and
JavaFX.

There were, however, some other changes that were made to improve the package which
centered around dependency management, code simplification, and testing. Given the basis in
Wheels but the incorporation of the new JavaFX platform, the name WheelsFX was chosen for
this new package.

3.1 Dependency Management

The first change that was made was to introduce a dependency management tool into the
project. The tool selected for this part was Maven, a common Java dependency management
tool. Amongst other things, Maven seeks to simplify the build process [8] which in this case was
seen as beneficial since it would permit for more rapid updates in the event there were bugs
found after deployment. Moreover, while a full unit test suite and continuous integration /
deployment pipeline were not created due to time constraints the inclusion of Maven would have
permitted these things to be done very easily.

3.2 Code Simplification

With Maven being introduced into the project this permitted the inclusion of the LOMBOK
package. LOMBOK is a package designed to help reduce repetitive code in Java programs such
as the code for getters and setters [9]. By using LOMBOK we were able to reduce in places the
amount of coding necessary since LOMBOK handled the generation of this code at compile time
including certain constructors and getters. Additionally, certain logical checks could be
eliminated since some of these could be handled with LOMBOK annotations.

3.3 Testing

As stated above a proper automated unit test suite was not included due to time constraints.
Despite this, some non-automated tests were included to ensure features worked correctly and to
facilitate regression testing for future iterations of this library. All key features were tested using
these non-automated tests.

4.0. Results

Figure 1: UML for WheelsFX

 Figure 1 above shows the structure of the WheelsFX library. The library utilizes a nested
structure to abstract away commonalities between shapes as shown by the inheritance
relationship used for shapes such as Ellipse. This allows for the future addition of shapes to
be done very easily as these new shapes can just extend the RectangularShape class and
gain all of their necessary capabilities. Alternatively, if a shape should not have the capabilities
that RectangularShape includes, the shape can directly inherit the Shape class like the
Line class does. In regards to the generation of the actual JavaFX shapes, these are generated
in the classes the user interacts with, but are stored in the parent Shape object.

 Additional objects of note include the Animator interface and the AnimationTimer

class which allow for students to create programs that are animated. The presence of these two
pieces allow for the demonstration of Interface Based Polymorphism in a more attention
grabbing way. One problem that has arisen though is the speed of the underlying timer from

JavaFX results in very fast animation. For safety reasons, students are encouraged to avoid any
animation that involves a color change as it can result in a strobing effect.

4.1. Usage of WheelsFX

Figure 2 Sample WheelsFX Student Drawing

 Given that WheelsFX was based off the ideas found in the Wheels library, the ease of use is
the same. The only real change comes in the generation of the frame. Whereas the frame was
instantiated in Wheels, WheelsFX requires the user to call the static createFrame method to
generate the frame. This call must also be done at the end of the main method code instead of at
the top for Wheels. Figure 2 (above) shows a sample image generated by a student using
WheelsFX. The student was able to generate this image without knowing inheritance or method
overriding which is required for working with JavaFX.

5.0. Conclusion and Future Research

In this paper, a new graphics framework called WheelsFX has been discussed. This
framework allows students to work with object oriented concepts in a graphical way using the
current graphics package instead of the now deprecated AWT and SWING packages. Moreover,
this package successfully simplifies JavaFX so any student starting out with graphics can use it
with no knowledge of inheritance or overriding required. In the future, it is possible to extend
WheelsFX to include the JavaFX 3D shapes as well to permit students to make more interesting
items than what can be done in 2D space.

6.0. Acknowledgements
 Special thanks to Dr. R. Daniel Bergeron for providing the WheelsUNH code without
which this project could not have happened. Also thanks to Neha Sagi for being willing to have
their work shown here as an example of WheelsFX.

7.0. Works Cited
[1] A. S. Gillis, "object-oriented programming (OOP)," TechTarget, July 2021. [Online].

Available: https://www.techtarget.com/searchapparchitecture/definition/object-oriented-
programming-OOP. [Accessed 26 December 2022].

[2] "JavaTpoint," JavaTpoint, 2021. [Online]. Available: https://www.javatpoint.com/history-
of-java. [Accessed 26 December 2022].

[3] L. Yan, "Teaching Object-Oriented Programming with Games," in 2009 Sixth International
Conference on Information Technology: New Generations, Las Vegas, 2009.

[4] K. E. Sanders and A. Van Dam, Object-oriented Programming in Java: A Graphical
Approach; Preliminary Edition, Pearson College Division, 2005.

[5] W.-K. Chen and Y. C. Cheng, "Teaching Object-Oriented Programming Laboratory With
Computer Game Programming," IEEE Transactions on Education, vol. 50, no. 3, pp. 197-
203, 2007.

[6] python.org, "turtle — Turtle graphics," [Online]. Available:
https://docs.python.org/3/library/turtle.html. [Accessed 30 December 2022].

[7] E. Engheim, "Why Should You Program with Julia?," Manning Free Content Center, 6 May
2022. [Online]. Available: https://freecontent.manning.com/why-should-you-program-with-
julia/. [Accessed 30 December 2022].

[8] Apache Maven Project, "Introduction," Apache Maven Project, 1 January 2023. [Online].
Available: https://maven.apache.org/what-is-maven.html. [Accessed 1 January 2023].

[9] M. Kimberlin, "Reducing Boilerplate Code With Project Lombok," Object Computing,
January 2010. [Online]. Available:
https://objectcomputing.com/resources/publications/sett/january-2010-reducing-boilerplate-
code-with-project-lombok. [Accessed 1 January 2023].

