
Paper ID #36974

Creating a Blueprint for Success in First-Year Computing

Prof. Frank Kreimendahl, Wentworth Institute of Technology

Frank Kreimendahl is an assistant professor in the School of Computing and Data Science at Wentworth
Institute of Technology. He is focused on teaching computer science fundamentals and building stronger
resources for student learning. He aims to bring interest and competence to algorithm-driven problem
solving in the classroom.

Durga Suresh-Menon

©American Society for Engineering Education, 2023



Creating a Blueprint for Success in First-Year
Computing

Frank Kreimendahl, Micah Schuster, Durga Suresh-Menon
School of Computing and Data Science

Wentworth Institute of Technology
Boston, MA, USA

kreimendahlf@wit.edu, schusterm@wit.edu, sureshmenond@wit.edu

Abstract—First-year computing is the most important pathway
to undergraduate degrees and student success in computing,
data science, engineering, and related fields. While there is an
abundance of research in the area, we still lack retention of
students in first-year computing. This is due to many factors
including, but not limited to, 1) student math preparation and
readiness from high school, 2) adjunct faculty teaching classes
where no common coursework is employed, 3) faculty teaching
the same courses in different ways, creating inconsistency in
material covered, and 4) lack of tutoring for students who are
struggling, behind, or do not understand the material.

This paper presents task force results from a collaboration
between faculty and academic support specialists. The paper
focuses on two high-impact areas of improvement: standardizing
curricula and building support scaffolding outside the classroom.
The results, a comprehensive course blueprint, include core
resources for a first-semester computing course and recommen-
dations for identification and support of struggling students.

Index Terms—computing, first-year, blueprints, CS I, CS II,
student success

I. INTRODUCTION

A. Who is Wentworth

Wentworth Institute of Technology is a 39-acre urban
campus in the city of Boston where the major programs
are engineering, computing, architecture, design, and
management.

Mission Statement: Wentworth, the university of opportu-
nity, provides our diverse community of learners with access
to educational programs responsive to evolving market needs.
Through a uniquely effective, hands-on, experiential, and co-
operative education approach, Wentworth prepares graduates
who are future-focused and career-ready.

Vision: Placing the student at the center of what we do, our
vibrant and diverse campus community of faculty, staff, and
students helps each member reach their greatest potential. We
seek to maximize the value of our graduates’ contributions to
global society and their effectiveness as future leaders. [6]

B. Size and Programs

Wentworth has approximately 4000 students who are pre-
dominantly pursuing undergraduate majors. The University
has five schools: Architecture and Design, Computing and
Data Science, Engineering, Management, and Sciences and
Humanities. It offers 21 undergraduate degree programs and

11 graduate degree programs. Approximately 300 first-year
students take CS I and CS II each year and come from majors
in computing, engineering, and management.

C. What are CS I and II at Wentworth

Computer Science I (CS I) is a foundational class that is
fundamental to the future success of students in computing ma-
jors at Wentworth. Other majors also rely on CS I to introduce
students to the basics of programming before branching into
major-specific computing courses. CS I covers the fundamental
concepts and skills of programming in Java. Students learn and
develop skills in problem-solving, algorithm development, pro-
gram design and structure, code documentation and style, and
testing and debugging. Topics include data types and variables,
device/file input and output, flow control and functions, use of
basic data structures, as well as principles and applications of
object-oriented programming.

Computer Science II (CS II) is the second foundational
class offered to computing majors at Wentworth. Other majors
also rely on CS II to introduce students to the basics of
programming before branching into major specific computing
courses. CS II covers the fundamental concepts and skills
of programming in Java. Students continue to develop skills
in problem solving, algorithm development, program design
and structure, code documentation and style, and testing and
debugging. Topics include object-oriented programming, in-
heritance and polymorphism, GUI basics with JavaFX, abstract
classes and interfaces, generics, collections, recursion, and
event-driven programming.

D. Strategic Pillars at Wentworth

Starting in June 2019, our university community undertook
an inclusive approach to develop a bold and ambitious strategic
plan. The completed plan was unanimously endorsed by the
Board of Trustees in February 2020.

The plan established four strategic focus areas – Inclusive
Excellence, High Value Learning, a Transformative Student
Experience, and Next Generation Partnerships. Within each
of these focus areas, the university established goals and
related actions to pursue.

Inclusive Excellence: We commit to the continuous de-
velopment of a campus culture that is increasingly diverse,



equitable, and inclusive. We strive to develop a campus where
everyone feels valued and meaningfully supported toward
reaching their full potential.

High-Value Learning: We commit to offering a high return
on investment by providing an education that equips our
graduates with the knowledge that is coupled with a highly
valued skill set. We accomplish this through opportunities
to address real-world challenges, applied research, social im-
pact projects, cooperative education, collaborative experiences,
cross-cultural exchange, and the effective use of advanced
technologies.

Transformative Student Experience: We commit to priori-
tizing the health and well-being of our students and providing
opportunities in support of their growth and transformation.
Our holistic approach includes an interconnection of high-
value learning, with high-quality services, activities, programs,
and opportunities that align with student needs, interests, goals,
and aspirations.

Next Generation Partnerships: We commit to maximizing
the mutual benefits of partnerships with industry, alumni,
and various communities. Through these partnerships, we
enhance the quality of learning for our students and provide
industry with a resource of skilled graduates. Through mutu-
ally beneficial forms of engagement, we support the lifelong
learning needs of our alumni. We promote economic and social
development in communities that include Boston and beyond.

II. LITERATURE REVIEW

The importance of first-year students learning to code has
been referenced heavily in literature. The literature referenced
below shows the different backgrounds of students who all
have one thing in common: the need to learn coding. These
works present methods, approaches, and forums that all high-
light the need for first-year students, women, at-risk students,
and students from all different backgrounds to learn to code.

In approaches like the guided inquiry approach [3], the
authors argue that a foundational competency in coding is
required across engineering disciplines and that this study
needs to start in the first year. This paper also talks about
the hesitation to code in some engineering disciplines. Foun-
dational computer science concepts help formalize student
thinking about both program structure and program design.
The method employed here uses guided questioning to reach
a solution.

Another area that emphasizes the need for creating suc-
cessful first-year experiences for at-risk students [4], uses
an introductory programming language like Alice to create
a less intimidating environment than traditional programming
languages. While software like Alice is well-documented and
provides a user-friendly interface for the students to work with,
it does not necessarily provide course consistency between
large sections of the courses offered. The objectives of this
study was to increase class participation, participation in
tutoring sessions, reduce DFW rates, and increase retention.

Another way to increase performance and persistence in
first-year CS classes has been through the use of group

projects, as discussed by the authors in [5]. In this paper,
the authors present an innovative method of using a learning
environment coupled with a summative assessment tool. The
students not only work in groups, but also present their
progress weekly which, in turn, helps with public speaking
and presentation skills. All these are very important for a first-
year student experience and for introductory programming.
This study showed increased attendance rates in the classes
and overall course grades increased by 22%.

The author in [7] describes a means to help retain women
in CS. This paper reveals that helping female students work
in teams increases their sense of belonging in the major and
leads to persistence. This paper also supports the claims made
by authors in [3].

Perhaps the best support we found for our methodology to
employ blueprints came from Cheah in [8]. They performed a
literature review of the Factors Contributing to the Difficulties
in Teaching and Learning of Computer Programming and
summarized one of the major factors as Ineffective Pedagogy.
Their analysis of pedagogy reviewed the sources of ineffective
teaching as teaching materials, teaching strategies, and unclear
syllabi.

By creating a blueprint, we have consistent course materials
and a common syllabus between different sections of each
course. The effective pedagogy goal we strive for is driven
by course coordination that happens in the CS I and CS II
classes, which results in common teaching strategies. Adding
to the teaching strategy is the use of embedded tutors in the
CS I and CS II classes that provide more scaffolding to the
students outside of lectures.

III. RATIONALE AND METHODOLOGY

Without a consistent framework for CS I, many students
will be unprepared for their subsequent computing courses.
This course blueprint, along with the supporting documents,
provides the framework for teaching the course in a consistent
manner across all sections. The blueprint includes descriptions
of the required tools, textbook, topics, assignments, exams,
checkpoint questions for faculty and students, and a sample
schedule for the course. Instructors at Wentworth use the
information contained in the blueprint when forming their
teaching plan. The blueprint was completed and first employed
in classrooms in Fall 2021.

In this section we will describe the rationale for creating
course blueprints and the methodology employed to create
them. We used data that was collected from Fall 2016 to Spring
2021. This data shows the performance of our students in the
first-year across many different schools.

A. Rationale

The rationale behind this research is three-fold:
1) Increase student retention at our institution
2) Provide a transformative student experience, which is

one of our strategic pillars
3) Provide a scaffold to our faculty while providing flexi-

bility of pedagogy



B. Methodology

• Identify when and where students struggled during a
semester or across semesters using CS I and CS II grades.

• Identify patterns of success and challenges in the class-
room based on semester grades and correlations between
grades in different courses.

• Create a template to guide all faculty teaching CS I and
CS II to maintain consistency across sections of the same
course.

• Provide methods of scaffolding for students who are
struggling by providing resources like tutoring, success
studio, and peer mentoring.

C. Data

The data collected show students by major in Computer
Science, Computer Networking, Applied Mathematics, Cyber-
security, and Engineering. The sample size N consisted of
1830 students from the School of Computing and Data Sci-
ence, with 1329 being Computer Science majors, 137 Applied
Mathematics majors and 361 Computer Networking majors.
There were also approximately 500 engineering students from
Biomedical Engineering, General Engineering, and Computer
Engineering.

TABLE I
CS I AND CS II PASS RATES BY GENDER

Gender 2016 2017 2018 2019 2020 Average
Female 89% 87% 90% 83% 89% 88%
Male 88% 89% 89% 85% 89% 88%

Table I shows the pass rate of the students in CS I and
CS II by year and gender. The table shows that there is a
high rate of success in these classes, and male and female
identifying students perform comparably. It should be noted
that in the Fall of 2020, Wentworth offered students the
choice of receiving a pass/fail instead of a letter grade.
However, the data here show that this did not affect the pass
rates. It should also be noted that women make up 21% of the
student body at Wentworth, while only 11% of the School of
Computing and Data Science students are female identifying.

TABLE II
CS I AND CS II PASS RATES BY RACE/ETHNICITY

Race/Ethnicity 2016 2017 2018 2019 2020 Average
Asian 89% 86% 92% 86% 88% 89%
Black or
African American 67% 70% 72%

Hispanic 86% 73% 77% 83% 80%
Nonresident Alien 88% 93% 90%
Other 84% 87% 88% 80% 85%
White 91% 90% 91% 88% 92% 91%
Average 88% 88% 89% 84% 89% 88%
Blank cells indicate sample size is too low.
Blank cell results are included in averages.

Table II shows the pass rates of our students based on race
and ethnicity. Wentworth consists of 58% white students and
all other races and ethnicities count towards the remaining
42%.

This data shows that white and Asian students are
completing CS I and CS II successfully and the students
identifying as African American and Hispanic are averaging
below 80%. We were encouraged to see that rate of passing
increased between 2019 to 2021 for both African American
and Hispanic students. With this data, we identified an area
where our instruction can improve to better support students
of color.

TABLE III
CS I AND CS II PASS RATES BY TRANSFER STATUS

Status 2016 2017 2018 2019 2020 Average
Non-transfer 88% 89% 89% 84% 89% 88%
Transfer 87% 85% 92% 87% 89% 88%
Average 88% 88% 89% 84% 89% 88%

Table III shows the pass rates of transfer students compared
to students who started their college education at Wentworth.
The cumulative averages are identical, showing no difference
in performance between the two categories.

TABLE IV
CS I SUCCESS RATES BY HIGHEST HIGH SCHOOL MATH ACHIEVED

Highest HS Math Fail Pass Withdraw
AP Calculus 6% 93% 1%
Calculus 6% 91% 3%
Pre-Calculus 9% 88% 3%
Other/No Info 9% 88% 3%
Algebra II 22% 71% 7%
Overall 8% 89% 3%

Table IV shows the rates of passing, failure, and withdrawal
for CS I students the first time they take the course compared
to their high school mathematical achievement. Repeated
attempts to take CS I are not included in the data. The
table shows that students with a math background only up
to Algebra II have a significantly decreased pass rate. This
reveals an area in which we can identify and support specific
students early.

TABLE V
CS II SUCCESS RATES BY HIGHEST HIGH SCHOOL MATH ACHIEVED

Highest HS Math Fail Pass Withdraw
AP Calculus 6% 90% 5%
Calculus 5% 90% 5%
Pre-Calculus 8% 84% 8%
Other/No Info 9% 85% 6%
Algebra II 7% 90% 3%
Overall 7% 87% 6%



Table V shows the rates of passing, failure, and withdrawal
for CS II students the first time they take the course compared
to their high school mathematical achievement. Repeated
attempts to take CS II are not included in the data. Rather than
in table IV, this table shows that CS II success is not strongly
impacted by a student’s high school mathematics achievement.

TABLE VI

CS II Outcome

CS1 Outcome Fail Pass, C
or lower

Pass, higher
Than C

Pass, C or lower 15% 38% 47%
Pass, higher than C 3% 16% 81%
18% of students are required to take CS I but not CS II.

Table VI shows the correlation of student performance
between CS I and CS II. 81% of students who performed
well in CS I continued to perform well in CS II. Similarly,
students who faced challenges in CS I with a grade of C
or lower often faced challenges in CS II. For students who
passed CS I with a C or lower, 15% of them failed CS II,
38% scored a C or lower, and only 47% passed with higher
than a C grade. Improving a student’s performance in CS
I should have a lasting improvement on their computing
education.

Table VII gives a translation of course numbers used in table
VIII to course names.

Table VIII shows grade correlations between common
courses taken by students in computing majors. CS I and
CS II are strongly correlated, whereas CS I and Computer
Organization are weakly correlated. All listed courses are
taken during a student’s first year except for Databases, which
is taken during the spring of sophomore year.

We provide some observations about the table as follows:
• High correlations between classes in the same semester,

even for classes in different subjects such as CS I and
English I

• Positive correlations between all courses taken in the first
year

• High correlation between CS and math courses, and CS
and engineering courses

TABLE VII
COURSE NUMBER TRANSLATIONS

Course # Name Semester
COMP 1000 Computer Science I Fall
COMP 1050 Computer Science II Fall
COMP 1200 Computer Organization Spring
COMP 2650 Databases Spring
ENGL 1100 English I Fall
ENGL 2200 English II Spring
ENGR 1800 Programming With Matlab Fall/Spring
MATH 1750 Engineering Calculus I Fall
MATH 1850 Engineering Calculus II Spring

• Low correlation between first and second-semester
courses, both in CS and engineering

• Very low correlation between Databases and Computer
Organization

The correlations shown in this table were informative in
our approach to designing the blueprint. Most of these corre-
lations were no surprise to us, as weaker correlations appeared
between courses that are not prerequisites to one another and
courses taken during different semesters.

In section IV we show the blueprint developed based on
the data presented in this section. The blueprint consists of all
the resources necessary for an instructor to deliver the course,
making it easy to share among instructors and also creating
institutional knowledge about the coursework in the school.

IV. THE CS I BLUEPRINT

This section describes our CS I blueprint in detail. While
the primary purpose of the blueprint is to increase student
retention, it has several added benefits for faculty. For new
faculty or faculty who have not taught the course at Wentworth
before, it clearly shows what materials should be covered. It
also gives a framework for coordinators who are making sure
that different sections of CS I are covering the same materials.

The blueprint we designed covered all of the details neces-
sary for an instructor to successfully deliver the class:

• ABET assessment questions
• Exams
• Assignments
• Labs
• Lecture slides
• Checkpoint questions for instructors
• Checkpoint questions for students
• Resources for faculty, staff, and students
• Syllabus template
• Sample semester schedule

Tables IX shows brief assignment titles and in-class lab
assignment titles used during the semester. The first in-class
lab assignment is given in week 6, after the first exam.

A. ABET Assessment Questions

The computer science program is ABET accredited and has
built-in assessments in all core courses in computing. CS I
and CS II are a part of these core courses.

ABET states specific proficiencies that students must pos-
sess at the conclusion of the semester. They are abilities to:

1) Choose the appropriate data type(s) for implementing a
given problem.

2) Analyze the behavior of programs involving the funda-
mental programming constructs.

3) Choose appropriate conditional and iteration constructs
for a given programming task.

4) Implement a program that uses fundamental program-
ming constructs.



TABLE VIII
GRADE CORRELATIONS BETWEEN CLASSES FOR CS STUDENTS

COMP
1000

COMP
1050

COMP
1200

COMP
2650

ENGL
1100

ENGL
2200

ENGR
1800

MATH
1750

COMP 1000
COMP 1050 0.47
COMP 1200 0.22 0.42
COMP 2650 0.21 0.23 0.11
ENGL 1100 0.42 0.37 0.28 0.23
ENGL 2200 0.35 0.41 0.33 0.18 0.42
ENGR 1800 0.55 0.30 0.41 0.49 0.44 0.38
MATH 1750 0.47 0.40 0.28 0.25 0.46 0.37 0.50
MATH 1850 0.42 0.48 0.27 0.33 0.36 0.40 0.47 0.58

TABLE IX
WEEKLY PROGRAMMING/LAB ASSIGNMENT TITLES

Assignment # Name
PA0 Hello World
PA1 Distance Conversion
PA2 Numerical Exercises
PA3 Heron’s Formula and Astrology
PA4 Inflation and Guessing Game
PA5 Block Letters and Streaming Average
PA6 Calendar
PA7 No Files
PA8 Files
PA9 Fraction Class
LA1 sum, mean, stdev
LA2 area, perimeter
LA3 norms
LA4 gcd
LA5 fraction arithmetic
LA6 Heron’s method

Sample ABET assessment question

Implement the selfDot method below, which takes as
input an array of integers and returns the sum of
the each of the elements squared. An example main
method, as well as corresponding output, is supplied –
you cannot change this method, and the output when
the program is run must conform exactly to the sample
output.

/* sample run:
14
125 */
public static void main(String args[]) {

int nums1[] = {1, 2, 3};
int nums2[] = {10, 5};

System.out.println(selfDot(nums1));
System.out.println(selfDot(nums2));

}

// put your selfDot method here

These outcomes have associated questions/problems that
students must be given and assessed on throughout the
semester.

B. Exams

The blueprint includes standardized exams for CS I that are
shared among all faculty. These exams include some of the
ABET assessment questions.

C. Programming Assignments

Complete weekly assignments are included in the blueprints.
The Java assignments include skeleton code and unit testing, as
well as solutions for the instructor. Assignment specifications
are also included.

D. In-class Labs

Starting after the first exam, students have weekly in-class
programming labs where they practice writing code to solve
small computing problems. These labs offer an opportunity for
students to get immediate feedback from instructors, as well
as collaborate with their peers.

E. Lecture Slides

An example set of PowerPoint lecture slides are included
for instructors. Instructors have creative freedom with their
usage of the slides, but they serve a launching point for each
instructor to present during lectures.

Table X shows the list of required topics in CS I. Faculty
may cover computing information beyond this core set of
topics, but it gives the minimum amount that should be
covered.

TABLE X
REQUIRED CS I TOPICS

Variables Conditionals Arrays
I/O Expressions OOP
Types Testing/Debugging Exceptions
Strings Loops File I/O
Control Flow Methods ArrayLists

F. Instructor Resources

The blueprint provides reflective checkpoint questions for
instructors to facilitate communication with students. Instruc-
tors get a list of questions to interact with students such as
“What is working well or not working to help you learn?”



and “Is the pace of this course too slow, just right, or too
fast?”

The blueprint also includes a list of resources including
contacts for wellness, accessibility, and library services –
resources that are outside the scope of the academic material
but are still important for student success.

G. Student Resources

Students also receive a list of checkpoint questions to
actively reflect on their course progress. They receive a list of
university resources to help with tutoring, class registration,
study spaces, etc..

The blueprint includes a supplementary programming lab
for students to practice running JUnit testing and interpreting
the output. There are also plans to build two labs for students
to practice using Eclipse’s built-in debugger to understand the
debugging process.

V. SUMMARY

In this paper, we identified a shortcoming in our first-
year computing classes, analyzed the performance of different
demographic groups, and built a course blueprint to increase
student success.

We summarize that we have built an improved set of
teaching and learning tools in the form of a blueprint. Our
approach was to build a set of tools that went beyond a
standardized set of lectures and assignments. We polled the
faculty informally and there is unanimous support for the use
of the blueprint. We have created course consistency and this is
monitored by the course coordinator of the courses. By having
a common syllabus, students in different sections of the course
are guaranteed the same material coverage.

We have to further study the efficacy of resources used in
the classroom and we plan to summarize that in the future
work section, as well as improve the blueprint. We also plan
to formalize many of the survey instruments so that we can
study the effects of the blueprint in depth and generate data
to support the strategic pillars of the institution.

FUTURE WORK

This paper and our work has lead us to many interesting
questions and further study that we would like to pursue.

A. CS I Group Project

Many of the papers in our literature review talked about
the advantage of introducing group projects in CS I. They
measured success in retention and persistence rate. We will
create one group project for Fall 2023 and study how students
respond to it in terms of satisfaction. We will create a survey
instrument for an after-project survey.

B. Study/Comparison of Grades

We will perform a study of comparison of grades before
and after the blueprint launch. We will also do a year-over-
year study of blueprint effectiveness in the Fall of 2023 and
2024.

C. Faculty Satisfaction With Blueprint

We will also survey the first year computing faculty re-
garding the satisfaction with using the course blueprint. The
pedagogy will be presented in a future work.

D. CS II Blueprints Description and Review

We plan to write a paper that describes the details of
the CS II blueprint that we have built, which follows a
similar pedagogical approach to the CS I blueprint. The CS
II blueprint similarly includes faculty and student resources to
ensure a consistent and successful approach to teaching the
course.

E. Second-Year Computing Blueprints

After building a strong framework for first-year computing
courses, we plan to build similar blueprints for our second
year of core computer science courses. These include two
courses: Data Structures and Algorithms. We hope to extend
our students’ increased success through their second year of
study.

F. Embedded Tutors

We use embedded tutors in all first-year CS courses but have
never studied their effect on the CS classroom, especially after
the blueprint has been developed. We will study the effects
by looking at 1) student retention in the class, 2) student
attendance in tutoring sessions and 3) DFW rates in the class.

ACKNOWLEDGMENT

We would like to thank Steven Sherrin and Lisa Keating
for collecting the data that was essential for our analysis of
student demographics and performance.

REFERENCES

[1] Rasala, R. Toolkits in First Year Computer Science: A Pedagogical
Imperative. SIGCSE Bull.. 32, 185-191 (2000,3)

[2] Goold, A. & Rimmer, R. Indicators of performance in first-year com-
puting. Proceedings 23rd Australasian Computer Science Conference.
ACSC 2000 (Cat. No.PR00518). pp. 74-80 (2000)

[3] Bettin, B., Jarvie-Eggart, M., Steelman, K. & Wallace, C. Preparing
First-Year Engineering Students to Think About Code: A Guided Inquiry
Approach. IEEE Transactions On Education. PP pp. 1-11 (2022,1)

[4] Armstrong, A. Successful First-Year Experience for At-Risk Students.
Proceedings Of The 2017 ACM SIGCSE Technical Symposium On
Computer Science Education. pp. 45-50 (2017)

[5] Billings, S. & England, M. First Year Computer Science Projects at
Coventry University: Activity-Led Integrative Team Projects with Con-
tinuous Assessment. Proceedings Of The 4th Conference On Computing
Education Practice. (2020)

[6] WIT Mission, Vision, and Values. (2023),
https://wit.edu/about/president/mission-vision-values

[7] Powell, R. Improving the Persistence of First-Year Undergraduate
Women in Computer Science. SIGCSE Bull.. 40, 518-522 (2008,3)

[8] Cheah, C. Factors contributing to the difficulties in teaching and learning
of computer programming: A literature review. Contemporary Educa-
tional Technology. 12, ep272 (2020)


