
Paper ID #36938

Teaching IoT in Both Physical and Virtual Environments

Prof. James R. Mallory, Rochester Institute of Technology (COE)
Edmund Lucas, National Technical Institute for the Deaf
William Arnold

©American Society for Engineering Education, 2023

1

Teaching IoT in Both Physical and Virtual Environments

Authors: Arnold, W., Fontaine, J., Griggs, S., Huff, G., Johnson, D., Linares, C., Patel, S.,

Reader, J., Roman, J., Sawaqed, Y., Yadav, R., Lucas, E. & Mallory, J. National Technical

Institute for the Deaf / Rochester Institute of Technology

Primary Division: Computing and Information Technology Division

Secondary Division: Education and Research Methods Division

Tags: IoT, VM, Virtual, Raspberry Pi, student labs, project development, virtual labs

Abstract

The growing field of the Internet of Things (IoT) is valuable for Engineering and Engineering

Technology students to know. Due to COVID and often limited resources, this can be a difficult

topic to teach. The authors pioneered a way to implement the same IoT systems both with

physical devices and a Virtual Machine (VM) environment using a Raspberry Pi with servos,

buttons, and lights. The VM used the Quick Emulator (QEMU) on the Ubuntu Linux platform.

QEMU is a type 2 hypervisor that runs within the user space and performs virtual hardware

emulation. The authors developed educational activities which allowed AAS/AOS level students

to implement a Raspberry Pi lab using both physical and virtual devices including servos,

buttons, and lights. The trials and tribulations will be shared as well as the successes with this

student lab project implementation.

Background

The Internet of Things (IoT) which incorporates objects communicating and interacting over the

internet is a field that is growing with the market expected to reach $1.8 trillion by 2028. There is

a growing demand for technically skilled workers with IoT expertise. This represents an

opportunity for postsecondary institutions to develop IoT curricula. Unfortunately, an IoT

curriculum can be costly to implement, as this requires physical inventory and lab/storage space

and students incur costs and are often left with superfluous hardware. The solution to this

would be to implement virtual Iot laboratories which could be done at a reduced risk and cost.

Using Virtual Machines (VM) also allows flexibility in the delivery of the coursework.

Prior Work (Literature Review)

J. He et al [8] created a physical IoT lab consisting of Raspberry Pi and Arduino boards and a

set of sensors with Zigbee as the wireless communication method. They developed a lab for an

Embedded Systems Analysis and Design course. The lab was a collection of self-contained

modules which presented concepts and hands-on exercises on embedded systems. This

approach requires the use of physical hardware, so it can be costly to implement or scale up.

2

Also, labs cannot be delivered remotely. R. Krishnamurthi [12] used Node-RED, a visual

programming language developed by IBM, to develop a two-credit, lab-only course offered to

undergraduate engineering students. This was a project-based course to study IoT sensors,

gateways, and cloud services. Node-RED can model application functionality between IoT

devices but not the IoT devices themselves. This is useful for students to study the interaction

between IoT devices, but it still requires investing in physical IoT hardware. M. Leisenberg and

M. Stepponat [13] developed IoT demonstrators to be used for teaching. They used

ThingSpeak, a publicly available cloud aggregator, and MATLAB to create a remote laboratory

experiment on IoT-based analysis of moving images. While this approach allows for remote

learning, students interact with the IoT data stream, not the IoT devices. Scaling up still

requires investing in additional hardware and could result in a higher cloud service cost.

Methods

Two of the faculty authors of this article implemented a Level 1 lab activity that required their

AAS level Applied Computer Technology students to develop a system with both a physical

Raspberry Pi model and in a VM environment and compare the two systems. A level (L1)

activity means that the project involves both research and implementation and will take several

weeks to complete. These would include the QEMU hypervisor, Python programming, the GPIO

Library, and Interfacing with Lights, Servos, and LEDs. The comparisons included both

functionality and the actual python coding similarities and differences.

The Raspberry Pi is the heart of both the physical and VM systems. The Raspberry Pi is well

suited for IoT and uses the Linux-based Operating System and a general purpose Input/Output

(GPIO).

Virtual (VM) System

Steps students were required to do to set up the VM System included:

1. Install the Hypervisor VMWare
2. Install Ubuntu Linux from an Image
3. Install the Qemu Emulator
4. Run Raspberry Pi Emulation in Qemu, emulate GPIO devices using the Python Library

called TKGPIO

The QEMU is a type 2 hypervisor capable of emulating the Raspberry Pi hardware. QEMU can

emulate arm, mips, and sparc as well as X86 architectures and is highly customizable.

GPIO Emulation is accomplished using a TKGPIO which is a python library that emulates GPIO.

It uses a GPIO zero API and allows the virtual environment to represent physical hardware with

images and allows interaction using a mouse.

3

Figure 1. GPIO Emulation

Once the simulated Raspberry Pi environment is set up, the tkgpio python library is used to

simulate Raspberry Pi GPIO devices and displays a graphical representation of the devices in a

GUI constructed with Tkinter. Python programs interact with the tkgpio library using the gpiozero

API. GPIO devices currently emulated include buttons, LEDs, motors, servos, motion sensors,

potentiometers, and LCD displays.

Tkgpio acts like a kind of wrapper for the students’ gpiozero python code. A setup function is

used to define the simulated GPIO environment. The function can be written as a separate file

and imported into their python program. The file should have a “.py” extension. The function

describes the dimensions of the Tkinter GUI, the devices being emulated, the GPIO pins

associated with the devices and the location of the devices within the GUI.

4

Take the following example code:

from tkgpio import TkCircuit

initialize the circuit inside the GUI

configuration = {

 "width": 300,

 "height": 200,

 "leds": [

 {"x": 50, "y": 40, "name": "LED 1", "pin": 21},

 {"x": 100, "y": 40, "name": "LED 2", "pin": 22}

],

 "buttons": [

 {"x": 50, "y": 130, "name": "Press to toggle LED 2", "pin": 11},

]

}

def run (main_function):

 circuit = TkCircuit(configuration)

 circuit.run(main_function)

The “height” and “width” define the size of the GUI window. Each class of devices is defined as

a list of individual devices in the class. In the above example, we define two LEDs and one

button. Each device’s placement within the GUI is defined by an x and y coordinate within the

GUI. The “name” is the label displayed over the device, and the pin is the GPIO pin associated

with the device. The “run” function will be used in the students’ python program to start the GUI

and run the program inside of it.

To use the virtual GPIO devices, simply import the setup file.

from <your-setup-file> import run

Do not include the .py extension here. Import the corresponding devices from the gpiozero

library.

from gpiozero import LED, Button

Import and/or write any other functions as a student normally would, including his/her main

function. Lastly, execute the main function inside the setup environment.

main = run(main)

5

Physical System

The basic steps the students needed to implement in the physical system included getting the

Raspberry Pi set up and interfaced with the proper pins, voltages, and input/output connections.

Figure 2. Raspberry Pi with I/O Pins

6

Figure 3. Raspberry Pi with I/O Pin Layout for Student Project

7

Figure 4. Raspberry Pi Physical System Setup

8

Figure 5. Student Measuring Voltages on Raspberry Pi

9

Figure 6. Python Code showing PIN Definition

10

Figure 7. Python Code showing Code for Servo

11

Figure 8. Python Code showing Code for LEDs

12

Figure 9. VM Environment

13

Figure 10. Python Code showing Code for Window Set up

Figure 10. Python Code showing Code for LED Definition

14

Figure 11. Code Showing Main Program Function Calls

Figure 12. Python Code showing Code for Servo and LED button Definitions

15

Figure 13. Summary of Python Code for VM System

Results

Students learned that the code listed below in bold was the same for both the physical and the

VM implementation of their system:

from servo_setup import run

from time import sleep

def main():

 while True:

 sleep(0.1)

main=run(main)

Conclusions

This hands-on laboratory was successful, as students learned how to use Raspberry Pi and

code in Python, and implement both physical and virtual systems. There was a steep learning

curve for AAS-level students who never had experience with Raspberry Pi or Linux. The

students described in this paper had exposure to Linux before the project but not to Raspberry

16

Pi. The Tkgpio simulation was slow to open but performed reasonably well once the simulation

began.

Students struggled in the beginning due to the learning curve, more so on the Virtual side than

they did on the physical side. One of the other negatives to this lab activity was the Raspberry

Pi VM was very slow to start because of the older hardware it was implemented on. This was

great exposure to the IoT world and complemented their computer and networking knowledge in

their current AAS technical program.

References

[1] N. Ahmad, P. Laplante, and J. F. DeFranco, “Life, IoT, and the Pursuit of Happiness,” IT

Professional, vol. 22, no. 6, pp. 4–7, Nov. 2020, doi: 10.1109/mitp.2019.2949944.

[2] C. Border, “The Development and Deployment of a multi-user, Remote Access Virtualization

System for networking, security, and System Administration Classes,” presented at the

Proceedinds of the 38th SIGCSE Technical Symposium on Computer Science Education, 2007.

[3] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things (IoT): Research,

Simulators, and Testbeds,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1637–1647, Jun.

2018, doi: 10.1109/jiot.2017.2786639.

[4] M. Dawson, F. G. Martinez, and P. Taveras, “Framework for the Development of Virtual Labs

for Industrial Internet of Things and Hyperconnected Systems,” IEEE Xplore, Oct. 01, 2019.

https://ieeexplore.ieee.org/document/8939660 (accessed Jun. 19, 2022).

[5] “Emulate Raspberry Pi with QEMU,” Azeria-Labs, 2022. https://azeria-labs.com/emulate-

raspberry-pi-with-qemu/ (accessed 2022).

[6] “Emulating ARM64 Raspberry Pi Image using QEMU,” www.youtube.com, Sep. 04, 2020.

https://www.youtube.com/watch?v=Y-FUvi1z1aU (accessed Mar. 20, 2022).

[7] R. Foley, “How to connect two aarch64 QEMU guests with a bridge,” ARM-Datacenter, Aug.

06, 2020. https://futurewei-cloud.github.io/ARM-Datacenter/qemu/network-aarch64-qemu-

guests/ (accessed Mar. 12, 2022).

[8] J. He, D. Chia-Tien Lo, Y. Xie, and J. Lartigue, “Integrating Internet of Things (IoT) into

STEM undergraduate education: Case study of a modern technology infused courseware for

embedded system course,” presented at the IEEE Frontiers in Education Conference (FIE),

Erie, PA, 2016.

[9] “How to connect GPIO in QEMU-emulated nachine to an object in host?,”

www.embeddedrelated.com, Mar. 20, 2020.

https://www.embeddedrelated.com/showthread/comp.arch.embedded/272409-1.php (accessed

Feb. 12, 2022).

about:blank
about:blank
https://ieeexplore.ieee.org/document/8939660
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/
https://www.youtube.com/watch?v=Y-FUvi1z1aU
https://futurewei-cloud.github.io/ARM-Datacenter/qemu/network-aarch64-qemu-guests/
https://futurewei-cloud.github.io/ARM-Datacenter/qemu/network-aarch64-qemu-guests/
https://www.embeddedrelated.com/showthread/comp.arch.embedded/272409-1.php

17

[10] J. K. S, “tkgpio: A Python library to simulate electronic devices connected to the GPIO on a

Raspberry Pi , using TkInter,” GitHub, Jul. 22, 2021. https://github.com/wallysalami/tkgpio

(accessed Jun. 20, 2022).

[11] S. Koch, “Hosting QEMU VMs with Public IP Addresses using TAP Interfaces - s.koch

blog,” blog.stefan-koch.name, Oct. 25, 2020. https://blog.stefan-koch.name/2020/10/25/qemu-

public-ip-vm-with-tap (accessed Mar. 11, 2022).

[12] R. Krishnamurthi, “Teaching Methodology for IoT Workshop Course Using Node-RED,”

presented at the Eleventh International Conference on Contemporary Computing (IC3), Noida

India, Aug. 2018.

[13] M. Leisenberg and M. Stepponat, “Internet of Things Remote Labs: Experiences with Data

Analysis Experiments for Students Education,” presented at the IEEE Global Engineering

Education Conference (EDUCON), Dubai, United Arab Emirates, Apr. 2019.

[14] B. Nuttall and D. Jones, “gpiozero — GPIO Zero 1.6.2 Documentation,”

gpiozero.readthedocs.io, 2015. https://gpiozero.readthedocs.io/en/stable/ (accessed Jun. 2022).

[15] L. J. Pérez and S. Rodriguez, “Simulation of scalability in IoT applications,” presented at the

International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, Jan. 2018.

[16] “QEMU documentation,” www.qemu.org. https://www.qemu.org/docs/master (accessed

Jun. 20, 2022).

[17] B. Ramprasad, M. Fokaefs, J. Mukherjee, and M. Litoiu, “EMU-IoT - A Virtual Internet of

Things Lab,” presented at the IEEE International Conference on Autonomic Computing (ICAC),

Umea, Sweden, Jun. 2019.

[18] “Setting up Qemu with a tap interface,” Gist, Feb. 13, 2018.

https://gist.github.com/extremecoders-re/e8fd8a67a515fee0c873dcafc81d811c (accessed Mar.

11, 2022).

[19] Source Meets Sink, “Emulating ARM64 Raspberry Pi Image using QEMU,”

www.youtube.com, Sep. 04, 2020. https://www.youtube.com/watch?v=Y-FUvi1z1aU (accessed

Mar. 2022).

[20] SUDONULL, “Virtual GPIO driver with QEMU ivshmem interrupt controller for Linux.,”

SudoNull, 2019. https://sudonull.com/post/80905-Virtual-GPIO-driver-with-QEMU-ivshmem-

interrupt-controller-for-Linux (accessed Mar. 20, 2022).

[21] S. Ugwuanyi and J. Irvine, “Security Analysis of IoT Networks and Platforms,” presented at

the International Symposium on Networks, Computers and Communications (ISNCC), Montreal,

QC, Canada, 2020.

[22] R. Vella Galea, “Raspberry Pi GPIO Emulator,” Roderick Vella Galea, Jun. 28, 2016.

https://github.com/wallysalami/tkgpio
https://blog.stefan-koch.name/2020/10/25/qemu-public-ip-vm-with-tap
https://blog.stefan-koch.name/2020/10/25/qemu-public-ip-vm-with-tap
https://gpiozero.readthedocs.io/en/stable/
https://www.qemu.org/docs/master
https://gist.github.com/extremecoders-re/e8fd8a67a515fee0c873dcafc81d811c
https://www.youtube.com/watch?v=Y-FUvi1z1aU
https://sudonull.com/post/80905-Virtual-GPIO-driver-with-QEMU-ivshmem-interrupt-controller-for-Linux
https://sudonull.com/post/80905-Virtual-GPIO-driver-with-QEMU-ivshmem-interrupt-controller-for-Linux

18

https://roderickvella.wordpress.com/2016/06/28/raspberry-pi-gpio-emulator/ (accessed Apr. 20,

2022).

[23] Fortune Business Insights, “Internet of Things (IoT) market size, share and industry

analysis,” Oct. 2021. [Online]. Available: https://www.fortunebusinessinsights.com/industry-

reports/internet-of-things-iot-market-100307. Accessed on: Dec. 6, 2021

[24] Rochester Institute of Technology.(2021, Spring). Foundations of IoT-ISTE730.

https://roderickvella.wordpress.com/2016/06/28/raspberry-pi-gpio-emulator/

