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Strategies to Optimize Student Success in Pair Programming Teams 

 

 

  



1. Introduction 

 

Pair programming is a software development paradigm used both in industry and in the 

classroom to increase productivity and reduce defects [11, 27]. In pair programming, two 

students share a single screen (virtually or in person) while working on a project synchronously. 

One student uses the keyboard to write the code (the driver), while another observes, offering 

feedback, and suggesting alternate courses of action (the navigator). Pair programming has been 

highlighted in the literature as an active learning technique that benefits computer science (CS) 

students in several ways: it allows “continuous review" where defects are corrected as they arise, 

it increases confidence in the final product, and it is “40-50% faster than programming alone" 

[20]. If done properly, students experience an improvement in “programming assignment grades, 

exam scores, and persistence in computer programming courses" [ 25]. There are several distinct 

social benefits for students when collaborating with a peer. Not only does it more closely model 

the post-university software development work environment, where team projects are normative, 

but it allows students to help one another without risking academic integrity violations. Finally, it 

provides an opportunity to improve communication techniques and can inspire healthy social 

interaction in a post-pandemic era [27]. 

 

For its many benefits, the full potential of pair programming is undercut when pair breakdown 

occurs. The optimal pairing of students to alleviate pair breakdown is still an open and elusive 

question. Researchers have found a net negative effect in effort spent on the assignment, balance 

of workload, splitting time as the driver, understanding of lab concepts, and interest in 

continuing in computer science when a student with less experience is paired with a stronger 

partner (i.e., when programming ability differs significantly) [7]. Most of the literature examines 

pair programming in introductory courses which may contribute to this effect, since students can 

have significantly different programming experience in high school. Ultimately, there is a need 

to identify and examine exactly which student factors correlate to a group’s success and mitigate 

pair breakdown so that the full benefits of pair programming might be realized. Our work seeks 

to answer the question what factors promote success in pair programming? We analyze key 

factors—gender, prior programming experience, confidence in programming, as well as 

preferences toward deadlines, communication, and leadership. We then provide several best 

practice suggestions toward the optimization of pair programming. 

 

2. Related Work/Background 

 

Researchers have generally assessed pair programming to be positive for both in person [11, 20, 

25, 27] and remote [1, 3, 5] modalities. In one meta-analysis of 18 studies, positive effects found 

included decreased time spent on low-complexity programming projects and increased quality of 

code for high-complexity programming projects [15]. However, there is reason to be cautious in 



thinking of out-of-the-box pair programming as a panacea for quickly scaffolding students’ 

competency in programming projects. Paired students’ ability to work together is key. 

Optimizing matching of individuals (e.g., social matching or social expert recommender 

systems) has a wide variety of applications across academia [30], industry [17, 19], online dating 

sites [8, 13, 31], and social networks in general [16, 18, 24]. 

 

Specifically in the CS education community, there is little agreement on which factors should be 

utilized to pair students. One often-mentioned factor is the difference in prior programming 

experience. A large-scale study conducted in computer science, humanities, and information 

science courses at the University of Iowa over two years noted that “students who worked with a 

more experienced partner actually had poorer outcomes, including lower effort exerted on the 

assignment, perceptions that their partner gave more effort than they did, less time in the driving 

role (i.e., typing out the assignment), lower understanding of concepts from lab, and less interest 

in computer science overall" [7]. Another study analyzed a post-course reflection essay for 

sentiment towards pair programming. In the “social" dimension they found that “students also 

reported that their partner can define the success of the pair programming activity: too much 

difference in knowledge level demotivates high-achieving students by increasing their workload, 

distracting them from the activity and making them slower, while low-achieving students cannot 

keep up with the high-achieving students’ pace and feel marginalized in the problem-solving 

activity. This may be why, with few exceptions, most students preferred to work with a similarly 

skilled partner" [9]. Thus, they point to prior programming experience as an important factor for 

a student enjoying, and benefiting from pair programming. Others have discovered a similar 

result when analyzing genders separately. In one such study, researchers found that women 

reported a feeling of “burdening their partner" when they were randomly paired with a partner 

who had greater programming experience, although they noted several benefits as a whole to the 

practice, finding it “improves understanding" and is convenient to have “someone [with whom] 

to ask questions and discuss ideas" before approaching a TA [29].  

 

Prior programming experience is not the only factor researchers point to when analyzing team 

success. A literature review on distributed pair programming (DPP) identified a need to “explore 

the effects of coordination, communication and cultural diversity in DPP" [12]. This is an 

important finding since an increasing number of students are voluntarily pair programming 

remotely (including 69% of the students in our study). One small scale study that investigated 

remote pair “jelling" (ability to work well together) identified communication and leadership 

style as factors that had a greater effect than prior programming ability, however, the study did 

not report statistical significance due to only having 5 pair programming groups [1]. Another 

study drilled down to examine communication via written text (in Slack and GroupMe) between 

freshman Honors College group members using several features and machine learning 

algorithms. They analyzed potential determining factors between high- and low- performing 



students, finding that sentence length and the number of words (rather than tone, large words, or 

analytical communication) best predicted performance [2]. Still others have found shared passion 

to be a key trait in enabling “pro-amateurs" (those with moderate ability) to effectively work on a 

team and recommend a dating-app-like process to match those with shared passion in the game 

development community [14]. 

 

Finally, a lack of clear agreement on the key factors as well as an absence of best practice 

recommendations in assigning programming partners due to the complexity of studying partner 

interaction has led some to propose completely automating the pair programming partner. One 

such study imagines, but did not implement, a conversational agent that adapts to the user’s skill 

level to avoid altogether the pairing of partners with different prior programming experience 

[22]. While this would mitigate conflicting schedules, communication issues, or interpersonal 

conflict, it is possible that removing the human component of pair programming would have 

some deleterious effect. 

 

3. Methods 

 

This study seeks to identify the factors that promote success in pair programming. Data from 

students in an upper-level computer science class was analyzed using linear models.  

 

3.1 Course Description 

Data Structures is a sophomore and junior-level course offered by the Department of Computer 

Science and Engineering at a large, public university in the southeast United States. The course 

is the last in a chain of three core courses required for a bachelor’s degree in computer science or 

computer engineering. Data Structures and Algorithms in C++ (2nd Edition) by Goodrich, 

Tamassia, and Mount was the primary textbook for the course. In addition to utilizing traditional 

lectures, Data Structures was recently redesigned to include several active learning techniques: 

live coding [23], small group discussion questions that modeled peer instruction [21], proactive 

(intrusive) advising [26], and pair programming. Students had access to several teaching 

assistants and peer leaders [10] outside of class. Data Structures was offered in person, with 

course material available on the Canvas learning management system. 

 

During the spring of 2022, two sections of Data Structures were taught by the second author, 

both of which utilized pair programming. In pair programming, the driver types the code while 

the navigator contributes to the flow of logic and suggests corrective, perfective, or refactorative 

maintenance. Both the driver and the navigator participate in real-time by utilizing the same 

screen. This may occur either in person, or remotely via screen sharing; students were allowed to 

choose the modality of their preference. The first section of Data Structures had 79 students, 

while the second section had 59. Students were assigned to pair programming groups based on 



factors gathered in a pre-course survey. Details on the process to create pairs are provided in 

subsection 3.3. 

 

Students were provided instruction on how to appropriately pair program via three different 

methods before any projects were assigned. First, the instructor described in class how to 

appropriately pair program and the benefits students would receive from following the process 

correctly. Second, the instructor took the second week of class to cover object-oriented design 

concepts through a week-long live coding project. In this way, a form of pair programming was 

demonstrated to students, with the instructor as the driver and the class collectively as the 

navigator. Finally, prior to beginning the first assignment, students in both sections were 

instructed to read a document on pair programming best practices [28] as suggested by [25] in 

their meta-analysis of 18 studies of pair programming. Approximately 41% of Data Structures 

students had experience with pair programming in a prior course. 

 

3.2 Participants and Research Design 

Participants included all Data Structures students. In total, there were 104 (79%) male students 

and 26 (20%) female students across both sections. The average number of years of prior 

programming experience was 2.89 (standard deviation of 1.52) with a maximum of 8 and a 

minimum of 0. Primary outcomes examined were students’ examination and assignment scores. 

Pre- and post-course surveys were conducted which asked students to report their individual 

preferences on factors potentially important to pair success, and to self-evaluate the effectiveness 

of active learning practices (pair programming in detail). Factors were rated on a 4-point Likert 

scale with ratings of "Strongly agree", "Somewhat agree", "Somewhat disagree", and "Strongly 

disagree". The 4-minute surveys were voluntary and were sent by another instructor to mitigate 

any perceived coercion. The survey instruments were piloted before the semester. Each survey 

had an 8-day window for completion, with students receiving extra credit on the final exam for 

successful completion of both surveys. Alternative means of obtaining equivalent extra credit 

were provided. The pre-course survey had a completion rate of 100% and the post-course survey 

had a completion rate of 93%. This study was approved by the university’s IRB (IRB Study #: 

STUDY002899). 

 

3.3 Pairing Students 

Prior to completing any course assignments, students filled out the pre-course survey described 

above that collected several factors potentially relevant to a pair programming group’s success. 

When creating pairs, we focused on deadlines, communication, and leadership style. Student 

responses were grouped by whether they were similar (either strongly or somewhat) or different 

for a statement. In total, 116 students were similar, and 23 students were different for the 

statement “I prefer to work far in advance of deadlines”, while 118 students were similar and 21 

were different for the statement “I prefer a high level of interaction/communication in my work 



environment.” Finally, 76 students were similar, and 63 students were different for the statement 

“I prefer to support someone else, rather than to take the lead on projects.” The finding on the 

last factor was rather surprising, as we expected a majority of computer science students to prefer 

taking the lead on coding projects. Results from the survey were used to shuffle student pairings 

until a balance between the three primary factors was achieved without distributing pairs across 

course sections (Table 1). Since students mostly preferred to work far in advance of deadlines 

and to have a high level of communication, fewer pairs had different answers to those questions. 

Leading vs. supporting had a better balance, with closer to half of the class answering each way. 

For example, in the leadership category approximately 52% of pairs in section 1 were similar, 

while 55% of pairs in section 2 were similar. Student demographics such as age and sex were not 

used as pairing factors. 

 

Table 1. Distribution of Primary Pairing Factors by Section 

 Section 1 Section 2 

 Similar Different Similar Different 

Deadlines 18 9 26 12 

Communication 18 9 29 9 

Leadership 14 13 21 17 

 

3.4 Primary Measures 

Students were given 4 programming project assignments to work on in pairs (weighted 40% of 

their final grade), and 3 exams to complete individually (weighted 60% of their final grade). 

There were two small-scale practice assignments that did not count toward a student’s final grade 

that were submitted individually to ensure that every student had the programming language and 

environment working on their computer. Each student’s final score was based on all coursework 

and exams.  

 

Secondly, students completed two surveys during the course (subsection 3.1). The first survey 

was completed at the beginning of the semester to gather baseline and demographic data and to 

assign pairs. Students completed the second survey at the end of the semester which gathered 

additional data on students’ experience in the course, attitude toward the various active learning 

techniques, and detailed comments toward pair programming. 

 

3.5 Data Analysis & Definitions 

Assignment score was explored as pairs, while exam score was explored individually. Factors 

were analyzed as the same or different depending on whether both students had the same 

response to each of the factors: gender, programming experience, confidence in programming 

skills, working with respect to deadlines, communication style, or preferring others to lead. 

Programming experience was defined as the same if the difference in students’ programming 



experience did not exceed 2 years. All factors except gender and programming experience were 

also analyzed as being similar if both students had the same or similar responses. Responses 

were considered to be the same if both students in the pair had the same response. Responses 

were considered to be similar if both students expressed a positive sentiment (strongly / 

somewhat agree), or both students expressed a negative sentiment (strongly / somewhat 

disagree).  

 

Table 2 shows a summary of the pairs’ responses with the additional factors for analysis once the 

data had been cleaned (e.g., groups of 3 and students who dropped the course were removed). To 

determine which factors were most important in facilitating pairs working well on assignments, 

backward stepwise linear regression models were estimated for assignment scores (see 

subsection 3.5). Exam scores were explored in the same way to elucidate if coding in pairs also 

impacted individual work. Post-hoc analyses were conducted to determine if factors were 

different for male and female students, and to identify the impact of student perceptions. 

 

Table 2. Summary of Sameness / Similarity in Pairs 

N = 65 Same Similar Different 

 n (%) n (%) n (%) 

    

Gender 44 (68)  21 (32) 

Programming Experience 15 (23)  50 (77) 

Confidence 28 (43) 50 (77) 15 (23) 

Deadlines 31 (48) 44 (68) 21 (32) 

Communication 24 (37) 47 (72) 18 (28) 

Leadership 27 (42) 35 (54) 30 (46) 

 

3.6 Analysis: Linear Regression 

Linear Regression estimates a linear relationship between a dependent (outcome) variable and a 

set of predictor (explanatory) variables. The line estimated is the least squares regression line, 

which minimizes the total error, or the difference between the actual value of the outcome and 

the value estimated by the line. The equation of the line is given by: 

 

  𝑌 = 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1  

 

With the following terms: 

 Y: The mean value of the outcome for a given set of values of 𝑥, 

  𝑛: The number of predictor variables, 

𝛽0: The mean value of the outcome when all 𝑥𝑖 = 0, 



𝛽𝑖: The increase in the mean value of the outcome when 𝑥𝑖 changes from 0 

(difference in preference) to 1 (similar or same preference). 

 

To find the best model to explain the outcome, we chose to use backward elimination. In this 

process, all predictors under investigation are entered into the regression model. Through a 

process of elimination, the least significant predictors are removed until a pre-specified stopping 

rule is reached. For our model, we used a stopping rule of 𝛼=.15. When a parameter is estimated, 

there is variance in the estimate due to sampling variation. This leads to having a confidence 

interval, or a range of values for the estimated parameter. Typically set at 95%, a confidence 

interval provides a range of values within which there is 95% confidence that the true value of 

the parameter falls. For this paper, a p–value of .05 was considered statistically significant. 

Factors with p–values between .05 and .10 are discussed. However, suggestions for best 

practices are solely based on factors which are statistically significant. 

 

4. Results 

 

In total, there were 104 (79%) male students and 26 (20%) female students across both sections. 

The average number of years of prior programming experience was 2.89 (standard deviation of 

1.52) with a maximum of 8 and a minimum of 0. Table 3 shows the complete results of the 

regression models predicting assignment and exam scores. Preliminary analysis (conducted 

before exam 3 results were finalized) indicated the predictors shown in Models 1 (assignments) 

and 3 (exams). These models were then run on the final data. Model 1 can be written as: 

 

Mean Assignment Score = 96.7 - 6.9 (deadlines) - 7.3 (comm style) + 7.3 (prog conf) 

 

This indicates that the mean assignment score for students with different deadline preference, 

communication style preference, and programming confidence is 96.7%. The difference between 

the mean scores of pairs who have similar communication style preference and those who do not 

is 7.3%, with similar communication style preferences having a lower score. We discuss and 

interpret each model separately in the following sections. 

 

Table 3. Regression Models Predicting Assignment and Exam Scores 

  Coeff. (95% Conf. Int.) P-value 

Model 1. Assignments 
  

Similar: Deadlines -6.9 (-14.2, 0.3) 0.061 

Similar: Communication Style -7.3 (-14.8, 0.2) 0.056 

Similar: Programming Confidence 7.3 ( -0.6, 15.1) 0.069 

Constant 96.7 (87.4, 106.1) <.001 

   



Model 2. Assignments (at least 1 female 

student) 

  

Similar: Deadlines -5.8 (-19.2, 7.6) 0.376 

Similar: Communication Style -14.1 (-23.7, -4.5) 0.006 

Similar: Programming Confidence 11.0 (0.8, 21.1) 0.036 

Constant 96.8 (82.7, 110.9) <.001 

   

Model 3. Exams 
  

Same: Gender 4.8 (-0.4, 9.9) 0.069 

Same: Deadlines 2.7 (-2.3, 7.7) 0.295 

Others leading   

Similar but not the samea 9.7 (2.0, 17.3) 0.014 

Sameb 2.5 (-2.8, 7.8) 0.354 

Constant 72.4 (66.9, 77.9) <.001 

   

Model 4. Exams (Male Students) 
  

Same: Gender 8.3 (1.5, 15.0) 0.017 

Same: Deadlines 1.0 (-4.7, 6.7) 0.734 

Others leading   

Similar but not the samea 11.0 (2.1, 19.9) 0.016 

Sameb 2.3 (-3.8, 8.3) 0.459 

Constant 69.7 (62.5, 77.0) <.001 

   

Model 5. Exams (Female Students) 
  

Same: Gender -4.8 (-19.0, 9.5) 0.495 

Same: Deadlines 12.7 (1.2, 24.3) 0.032 

Others leading   

Similar but not the samea .7 (-15.3, 16.7) 0.926 

Sameb 5.1 (-6.1, 16.2) 0.355 

Constant 71.6 (62.1, 81.2) <.001 
aPair responses were both positive or both negative, but not identical 
bPair responses were identical 

 

4.1 Model 1. Assignments 

Among all pairs, backward selection regression models indicated that similarity with respect to 

deadlines, communication style, and programming confidence marginally impacted assignment 

scores (p > .05 & < .10). Similarity in programming confidence was the only factor that had a net 

positive effect on assignment score, indicating that students may have overall higher scores when 

paired according to similar programming confidence, but different preferences regarding 

deadlines and communication style (e.g., to avoid both students preferring to submit close to the 

deadline or both students preferring little communication and interaction). 

 

 



4.2 Model 2. Assignments (at least 1 female student) 

In the 26 pairs with at least one female student, those with similar communication style 

preference scored on average 14.1% lower than those whose styles were different (p=.006) on 

assignments. Pairs with students who were similarly confident in their programming skills scored 

on average 11.0% higher on assignments than those whose confidence were different (p=.036).  

 

4.3 Model 3. Exams 

Exam scores are an important indicator of the effect of pair programming, as they are individual 

in nature and thus not directly related to the pairs themselves. When modeling exam scores, 

models indicated that being in a pair with similar, but not the same, preference toward others 

leading was significantly associated with exam scores, and those students scored on average 

9.7% higher on exams compared to others (p=.014).  

 

4.4 Model 4. Exams (Male Students) 

For male students, being in a pair of same gender and having similar (but not the same) 

preference toward others leading were significantly associated with better exam scores. Male 

students who were in pairs of the same gender scored on average 8.3% higher on exams 

(p=.017), and those in pairs where students had similar (but not the same) preference with 

respect to others leading scored on average 11.0% higher on exams compared to others (p=.016).  

 

4.5 Model 5. Exams (Female Students) 

For female student performance on exams, those in pairs with the same preference toward 

deadlines scored on average 12.7% higher than others (p=.032). A T-test to compare exam scores 

for male and female students revealed that there was no significant difference in the mean exam 

scores. 

 

4.6 Pair Programming Survey Results 

Most students (62%) strongly agreed or somewhat agreed that pair programming was helpful, 

while 24% strongly disagreed (Figure 1). Most students (75%) strongly agreed or agreed that 

pair programming was enjoyable, while 14% strongly disagreed. Just under half the students 

(47%) strongly agreed or somewhat agreed that pair programming helped to prepare them for 

exams, while almost three-quarters (74%) strongly agreed or somewhat agreed that pair 

programming helped to prepare them for their future career. Most students (69%) always worked 

remotely, compared to 30% who worked partially or completely in-person. Finally, 74% of 

students strongly agreed or agreed that they would prefer to self-select their programming 

partner, although there were a few who wanted to be assigned a partner. 

 

 



 

Fig. 1. Pair Programming Survey Results 

 

Pairs were similar with respect to whether they 1) found pair programming helpful, 2) enjoyed 

pair programming, 3) believed pair programming prepared them for exams, 4) believed pair 

programming prepared them for their future careers, and 5) would prefer to self-select their pair 

programming partner. However, there were significant differences in how they rated their 

partner’s programming abilities compared to their own (p=.012). Rating of partner abilities was 

explored for concordance and strong concordance in which student was perceived to have 

stronger programming abilities. Ratings had concordance if one student (strongly or somewhat) 

agreed with the statement, “My pair programming partner’s programming abilities were greater 

than mine" and their partner (strongly or somewhat) disagreed with the statement. I.e., they both 

agreed on which partner had stronger programming abilities. Ratings had strong concordance if 

one student strongly agreed/disagreed with the statement while their partner strongly 

disagreed/agreed with it, or if one student somewhat agreed/disagreed while their partner 

somewhat disagreed/agreed with the statement. I.e., they both perceived one student to be more 

proficient. 44 (65%) of the pairs had concordance, while 26 (38%) had strong concordance, 

signifying that students can often identify the partner with more experience. Pairs with 

concordance and strong concordance scored higher on assignments. However, these differences 

were not statistically significant.  

 

4.7 Group Issues 

There were 7 pairs of the 65 total (11%) that had issues tagged by the instructor over the course 

of the semester. These issues included lack of communication between students, lack of 

participating or completing the work as agreed, and scheduling conflicts. A T-test to compare the 

mean assignment score for these groups compared to the other groups revealed a significant 

difference. Groups that had issues scored on average 14.2% (p=.007) lower on assignments than 

groups that did not report any issues. Group issues also impacted students’ performance on 



exams. Students from pairs reporting group issues scored on average 10.8% (p=.010) lower on 

their exams compared to students from pairs who did not report any group issues.  

 

5. Discussion 

 

In pairs with at least one female student, those with similar communication style preference 

scored lower than those whose styles were different on assignments. Pairs with students who 

were similarly confident in their programming skills scored higher on assignments than those 

whose confidence were different. Thus, pairing female students based on similar programming 

confidence (not necessarily programming experience) appears to be an important factor for best 

performance on assignments. This supports prior findings that students may prefer, and receive 

benefit from, working with a similarly skilled partner [7, 9]. 

 

Modeling exam scores indicated that being in a pair with similar, but not the same, preference 

toward others leading was significantly associated with exam scores, and those students scored 

higher on exams compared to others. This suggests that it is better to have a pair where one 

student strongly desires to lead or support, and where the second student is more flexible. Being 

in a pair with the same gender marginally impacted (p > .05 & < .10) exam scores in the positive 

direction, however, further investigation indicated that this positive effect was driven by the 

larger number of male student pairs compared to female student pairs. For male students, being 

in a pair of same gender and having similar (but not the same) preference toward others leading 

were significantly associated with better exam scores. Male students who were in pairs of 1) the 

same gender or 2) with similar (but not the same) preference with respect to leading scored 

higher on exams. Thus, for male student performance on exams, our results suggest that a pair of 

two male students, with one flexible on who leads, will perform best. For female student 

performance on exams, those in pairs with the same preference toward deadlines scored higher 

than others. This suggests that the most important factor identified for female student success in 

pair programming was for a female student to be paired with another student (male or female) 

who had the same preference toward submission deadlines.  

 

Most students strongly agreed or somewhat agreed that pair programming was helpful and 

enjoyable. However, it is noteworthy that students enjoyed pair programming more than they 

found it helpful. This may point to the social impact of pair programming for students and may 

have implications for student retention. Students believe that pair programming better prepared 

them for their future career than it prepared them for exams. Students probably realize that pair 

programming, as opposed to working individually, more closely resembles the way they will 

develop software in their future careers. It is encouraging that students notice and appreciate the 

big picture use of pair programming. Most students always worked remotely, but it is important 

to make an in-person option available, rather than constraining how students must work together. 



Finally, the majority of students preferred to self-select their programming partner, although 

there were a few who wanted to be assigned a partner. 

 

Group issues were noted in a few pairs. Pairs that experienced group issues scored lower on 

assignments and exams. While conflict is not unexpected, it is important to note that this conflict 

not only impacted their group work (assignments), but also their individual work (exams). While 

assigning pairs in a more data-driven manner can help to mitigate issues, no method will be fail-

safe. In fact, there is significant benefit to an instructor taking time to coach students in conflict 

on how to communicate and resolve issues such as scheduling, flexibility, setting and meeting 

goals, and accountability. Doing so allows students to raise their EQ (emotional intelligence) and 

to prepare to handle the inevitable workplace or social conflict. In the experience of the course 

instructor, it is not always advisable to immediately switch pairs or split a pair when a conflict is 

first identified, especially if re-assignment may affect other pairs. Instead, effort should be made 

to allow students to develop these soft skills before more drastic measures (such as allowing a 

student to work individually or in a group of three) are taken. Another option is to rotate pairs 

throughout the semester. Aside from the administrative cost this incurs, it may reduce 1) the 

opportunity for pairs to resolve conflict and 2) the teamwork capabilities of the students. For 

example, it causes overhead for a student to adjust to a new partner, schedule, 

communication/leadership style, and prior ability for several projects in a single semester. Still 

another option is to allow students to self-select their teams (which was the majority preference 

in our post-course survey responses). This is an approach for conflict mitigation we will consider 

in future studies. 

 

In the post-course survey, we asked students about their perception of the “ideal" pair 

programming partner in a free-response question. Responses were coded based on several 

common themes: communication, even balance of workload, ability of pair programming 

partner, and time management. Most students mentioned good communication, discussion, or a 

partner who responds, supporting prior work noting the importance of communication [1, 29]. 

This was far greater than the percentage that mentioned partner ability, time management, or 

balancing the workload. Several frequently used words and phrases were patience, flexibility, 

and motivation. The results of this analysis suggest the obvious: that communication and social 

interaction are very important to students. Thus, we highlight the importance of students learning 

and practicing good communication soft skills in the computer science major, rather than simply 

focusing on technical skills (i.e., programming languages and paradigms). 

 

5.2  Plagiarism 

We remain optimistic that violations of academic integrity are reduced through the use of pair 

programming. When students meet synchronously to pair program, it is difficult, if not 

impossible, to copy code and present it as one’s own work. There is probably enough social 



stigma to prevent one partner from convincing another to plagiarize. Secondly, one student may 

encourage a less-motivated student to meet earlier and not leave work to the last minute. In cases 

where plagiarism still occurs, it is likely due to a breakdown of pair communication or planning 

when one or both students procrastinate on the project. This breakdown of teamwork can be an 

early indicator that cheating may occur and should be closely monitored. When handling 

academic integrity cases, plagiarism is easier to identify with pairs of students since conversation 

and sharing of code are typically well-documented. 

 

6. Conclusion and Future Work 

 

Pair programming is a social and active learning technique that clearly impacts student 

collaboration and course outcomes. It can confer an advantage over individual coding given that 

students pair well so that team breakdown does not occur. We analyzed several factors for 

correlation to student success on both assignments and exams and for male and female students 

separately: preference toward deadlines, communication, leadership style, and programming 

confidence. In a free-response section on a post-course survey, students themselves indicated that 

proper communication is the most important factor they perceive in a high-quality pair 

programming partner. Our quantitative analysis identified that, for best results on assignment 

scores, students with similar programming confidence, but different preferences toward 

deadlines and communication style should be paired. Students paired with similar preference 

toward others leading performed best on individual assignments (i.e., exams). For male students 

same-gender pairs with similar preference toward others leading scored higher on exams. 

Finally, female students pair best when they have similar programming confidence, and when 

both students have the same preference toward deadlines. Ultimately, we found that proper 

pairing of students is an important first step toward ensuring student enjoyment of programming 

and success in the course. 

 

For future work, we intend to analyze the results of the survey free-response questions with a 

natural language processing algorithm to identify common trends (i.e., aspects with correlated 

sentiment) [4, 6]. This will allow us to better understand what would increase students’ 

confidence in their programming abilities, their career aspirations, and their like or dislike of pair 

programming. This will also allow us to compare the sentiment in the responses on the “ideal" 

vs. the “non-ideal" pair programming partner. We would also like to allow students to select their 

pair programming partner to determine whether students self-select certain traits organically, and 

compare those groups with students paired according to our findings in this paper to further 

validate the effectiveness of our findings. Finally, we are interested in exploring additional 

factors such as partner responsiveness and reliability, and whether these factors change or 

improve over time with intervention to further increase the positive impact of pair programming. 
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