
Paper ID #36738

Capstone Project: CPU Design with Multiplexer

Prof. Yumin Zhang, Southeast Missouri State University

Yumin Zhang is a professor in the Department of Engineering and Technology, Southeast Missouri State
University. His research interests include semiconductor devices, electronic circuits, neural networks, and
engineering education.

©American Society for Engineering Education, 2023

Capstone Project: CPU Design with Multiplexer

Anthony F. Di Mauro, Michael C. Hawkins, Bradley K. Lindsey, Yumin Zhang

Department of Engineering and Technology

Southeast Missouri State University

Cape Girardeau, MO 63701

Abstract

For a capstone design project, we designed and implemented an 8-bit CPU on an Altera DE2

FPGA board. The CPU uses 4-bit opcodes and can execute 16 instructions, including basic

arithmetic and logic operations. We simplified the control unit by implementing it with a

multiplexer. We fully tested the CPU by inputting instructions and data through the DE2 board

switches, and displaying the results on the seven-segment displays and LEDs. This project

provides a valuable opportunity for students majoring in electrical engineering and computer

science to gain insight into the relationship between machine codes and their corresponding

operations.

Introduction

The CPU is the core component responsible for information processing, making it a crucial topic

for students majoring in electrical engineering and computer science to comprehend.

Unfortunately, the structure of a CPU is often highly complex, making it difficult for those

outside of computer engineering to grasp its intricacies. Although some efforts have been made

to design simplified CPUs [1, 2], they can still be quite challenging for many students to fully

understand.

A CPU consists of three fundamental components: the arithmetic logic unit (ALU), control unit

(CU), and registers. Of these components, the CU is typically the most complex to design.

Traditionally, control units are implemented using finite state machines, while pipelined

structures are used in advanced architectures [3]. However, given the limited time available for a

capstone design project, these approaches can prove to be overly challenging. Instead, we opted

for a simpler approach: instruction sets are decoded using multiplexers. This method provides a

clear interface between machine codes and their corresponding operations, making it easily

understandable even for students with limited digital electronics backgrounds.

Instruction Set and Display

Designing a CPU typically begins with defining the instruction set, which then informs the

overall hardware architecture. For our capstone design project, we limited the opcodes to 4 bits,

which allowed us to design 16 different operations as listed in Table 1. Once the instruction set

has been finalized, the components within the ALU can be designed to match. While the ALU is

considered the heart of a processor, its design is relatively straightforward and the necessary

logic circuits can be found in many reference materials [4, 5]. Similarly, register design is also

quite simple, as various types of registers are well-covered in many digital logic circuit textbooks

[6, 7].

Table 1. Opcodes in instruction set.

These instructions can be grouped into two primary categories: arithmetic operations and logic

operations. We have demonstrated the functionality of these operations in a video featuring the

DE2 board [8], and additional details regarding the I/O interface are shown in Fig.1. The yellow

labels indicate the switches used for inputs, the displays of the two operands and the output

values.

Fig. 1. Input and output in DE2 FPGA board.

Operation
Opcode

Bit 3 Bit 2 Bit 1 Bit 0

Addition 0 0 0 0

Subtraction 0 0 0 1

Multiplication 0 0 1 0

Integer Division 0 0 1 1

Shift Left 0 1 0 0

Shift Right 0 1 0 1

Rotate Left 0 1 1 0

Rotate Right 0 1 1 1

Logic AND 1 0 0 0

Logic OR 1 0 0 1

Logic XOR 1 0 1 0

Logic NOR 1 0 1 1

Logic NAND 1 1 0 0

Logic XNOR 1 1 0 1

Comparison of A > B 1 1 1 0

Comparison of A = B 1 1 1 1

As shown in Fig. 1, the switches 0-7 on the right are used to input operands A or B, and their

selection is controlled by switches 10-11. These two binary numbers are stored in two registers

and displayed in the LEDs above the switches. In addition, the decoded decimal numbers of A

and B are displayed in the 7-segment displays. Specifically, the binary number of A is displayed

in LEDs 0-7, while its decimal value is displayed in the 7-segment displays 4-5, highlighted with

yellow frames. Similarly, the binary number of B is displayed in LEDs 10-17, and its decimal

value is displayed in 7-segment displays 6-7 on the left, highlighted with purple frames. The

Opcode is input from switches 13-17 on the left side. The binary output value is displayed in the

group of eight LEDs on the right, while its decimal value is displayed in the three 7-segment

displays 0-2 on the right, highlighted with white frames.

Conceptual Design

In terms of CPU design, each operation within the instruction set can be viewed as a separate

module. The adder is the most frequently utilized component within an ALU, as it is involved in

numerous operations. Subtraction can be implemented as addition when the subtrahend is

represented as a negative number in 2’s complement format. Additionally, integer multiplication

can be achieved through a combination of left shifting and addition/subtraction. To illustrate this

point, the multiplier can be expressed as the sum of several terms, such as: 5 = 22 +1 or 11 = 23

+22 – 1. Multiplying by 2n can be accomplished by simply shifting the bits to the left, and then

the result can be obtained via the addition/subtraction operation.

By implementing each instruction as a separate module, operations can be performed in parallel.

This means that all 16 results can be obtained once the input data has been processed. To select

the appropriate output, the control unit simply needs to utilize a 16-1 multiplexer with the 4-bit

opcodes serving as the selection bits, which is shown in Fig. 2.

 (a) (b)

Fig. 2. Control unit implemented with a multiplexer: (a) block diagram and (b) logic circuit.

In Fig. 2, we can see the circuit diagram for the multiplexer mentioned earlier. The 16 input bits

represent the results from the 16 modules in the ALU, while the opcodes serve as the selection

bits (
3 2 1 0
, , ,S S S S) at the bottom of Fig. 2(a). The logic circuit in Fig. 2(b) shows that selection

is accomplished through the use of AND/OR gates, with two equations from Boolean algebra

utilized: 0 0X  = and 0X X+ = . Each AND gate in the circuit has five input bits, one from a

module in the ALU and four from the selection bits.

For example, the four control bits of the rightmost AND gate are (
3 2 1 0
, , ,S S S S). If any of the

selection bits (
3 2 1 0
, , ,S S S S) is ‘1’, the output of the AND gate will be ‘0’, effectively blocking

input data. Therefore, the condition for the data D0 to become the output of the multiplexer is

that the four selection bits are (0 0 0 0), which corresponds to the opcode for addition found in

Table 1. As such, D0 should be the result of the 8-bit adder.

In the same way, we can see that the second AND gate from the right, with D1 as the data input,

has the control bits of (
3 2 1 0
, , ,S S S S). Therefore, D1 can become the output of the multiplexer

provided the opcode is (0 0 0 1), which corresponds to the operation of subtraction. Similarly,

each of the 16 opcodes in the instruction set corresponds to a specific AND gate in the circuit,

and only one of them becomes active for each opcode in the instruction set.

VHDL Design

In this project, the Arithmetic Logic Unit (ALU) and Control Unit (CU) have been combined and

implemented as a single component named "alu_code" at the top level, shown as a block in the

middle of the second column in Fig. 3.

Fig. 3. Top Level CPU Circuit

To the left of the ALU-CU block, there are three input buses, which are connected to two

registers, A and B, as well as the switches for input machine code. The output bus of the ALU-

CU block is connected to a decoder that converts an 8-bit binary number into a decimal number.

Since an 8-bit binary number can represent a positive integer between 0 and 255, the decoder on

the right side of the ALU-CU block is connected to three 7-segment display modules. For

instance, if the result from the ALU-CU block is 123, the three 7-segment displays will

respectively show (1-2-3).

To display the input numbers, the outputs from registers A and B are connected to two decoders

located above and below the ALU-CU block in Fig. 3. Since the DE2 board has only eight 7-

segment displays, with three reserved for displaying the CPU results, each register (A or B) has

only two 7-segment displays available for output. Therefore, the third output pin of these two

decoders is not used. Although the decoders can only display up to 99, the input number range is

still between 0-255.

The ALU-CU component is designed by using VHDL, and the entity is shown in Fig. 4. In this

code, A and B are the two 8-bit inputs from the two input registers, OP represents the 4-bit

opcode, and O is the 8-bit output. In the architecture, the function of the ALU-CU is

implemented with a case-statement structure, where each of the 16 opcodes is specified. This can

be considered as the translation of the instruction set. Using the ieee.numeric_std package, all

arithmetic operations can be easily handled.

Fig. 4. Interface of ALU-CU module

Discussion

Although computers and microcontrollers are ubiquitous in modern society, many people,

including programmers and engineers, do not fully understand how they work. Computer

architecture is a complex subject, and some attempts to simplify it using a simplified version of a

CPU [9] are still demanding for most people. This capstone design project offers a

straightforward approach that can be easily understood by anyone with a basic background in

digital logic circuits. As a result, it can be integrated into courses on microcontroller and

computer organization, making it an accessible and valuable teaching tool.

Due to the limited time available for this capstone project during the pandemic, several features

of the CPU were not included. For instance, there are various flags that are required for

conditional jumps, such as zero, carry, negative, and overflow. Furthermore, our CPU is

designed to work only in the "discrete mode," where the opcodes and data are manually inputted.

However, a more functional version of the CPU can be created by incorporating an on-board

clock and memory, which is the topic for a future capstone project.

Conclusion

As a capstone project, we successfully designed and implemented an 8-bit CPU using the DE2

FPGA board. The CPU has 16 operations in its instruction set, each defined by a 4-bit opcode.

With the use of VHDL code, we were able to realize the arithmetic functions of the ALU-CU at

a higher level, bypassing the need for circuit-level design. We tested all the operations in the

instruction set and verified the results through the use of the 7-segment displays and LEDs on the

DE2 board.

References

[1] Ronald Hayne, “An instructional processor design using VHDL and an FPGA”, Proceedings

of 118th ASEE Annual Conference, Vancouver, BC, Canada, June 26 - 29, 2011.

[2] Karim Salman, Michael Anderton, “5-step design methodology for a general purpose CPU

using standard CPLDs/FPGAs”, Proceedings of 112th ASEE Annual Conference, Portland,

Oregon, June 12 - 15, 2005.

[3] David Patterson, John Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 6th ed. Amsterdam, Netherland: Morgan Kaufmann, 2020. ISBN:

978-0128201091.

[4] M. Morris Mano, Charles Kime, Tom Martin, Logic & Computer Design Fundamentals, 5th

ed. Boston, MA: Pearson, 2015. ISBN: 978-0133760637.

[5] David Harris, Sarah Harris, Digital Design and Computer Architecture, 2nd ed. Amsterdam,

Netherland: Morgan Kaufmann, 2012. ISBN: 978-0123944245.

[6] Ronald Tocci, Neal Widmer, Greg Moss, Digital Systems: Principles and Applications, 12th

ed. Boston, MA: Pearson, 2016. ISBN: 978-0134220130.

[7] Brock J. LaMeres, Introduction to Logic Circuits & Logic Design with VHDL, 2nd ed. Cham,

Switzerland: Springer, 2019. ISBN: 978-3030124885.

[8] Demonstration video: https://youtu.be/MuV13OMyMwg

[9] J. Clark Scott, But How Do It Know? The Basic Principles of Computers for Everyone. John

C Scott, 2009. ISBN: 978-0615303765.

