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Abstract 

 

For a capstone design project, we designed and implemented an 8-bit CPU on an Altera DE2 

FPGA board. The CPU uses 4-bit opcodes and can execute 16 instructions, including basic 

arithmetic and logic operations. We simplified the control unit by implementing it with a 

multiplexer. We fully tested the CPU by inputting instructions and data through the DE2 board 

switches, and displaying the results on the seven-segment displays and LEDs. This project 

provides a valuable opportunity for students majoring in electrical engineering and computer 

science to gain insight into the relationship between machine codes and their corresponding 

operations. 

 

Introduction 

 

The CPU is the core component responsible for information processing, making it a crucial topic 

for students majoring in electrical engineering and computer science to comprehend. 

Unfortunately, the structure of a CPU is often highly complex, making it difficult for those 

outside of computer engineering to grasp its intricacies. Although some efforts have been made 

to design simplified CPUs [1, 2], they can still be quite challenging for many students to fully 

understand. 

 

A CPU consists of three fundamental components: the arithmetic logic unit (ALU), control unit 

(CU), and registers. Of these components, the CU is typically the most complex to design. 

Traditionally, control units are implemented using finite state machines, while pipelined 

structures are used in advanced architectures [3]. However, given the limited time available for a 

capstone design project, these approaches can prove to be overly challenging. Instead, we opted 

for a simpler approach: instruction sets are decoded using multiplexers. This method provides a 

clear interface between machine codes and their corresponding operations, making it easily 

understandable even for students with limited digital electronics backgrounds. 

 

Instruction Set and Display 

 

Designing a CPU typically begins with defining the instruction set, which then informs the 

overall hardware architecture. For our capstone design project, we limited the opcodes to 4 bits, 

which allowed us to design 16 different operations as listed in Table 1. Once the instruction set 

has been finalized, the components within the ALU can be designed to match. While the ALU is 

considered the heart of a processor, its design is relatively straightforward and the necessary 

logic circuits can be found in many reference materials [4, 5]. Similarly, register design is also 

quite simple, as various types of registers are well-covered in many digital logic circuit textbooks 

[6, 7].  

 



Table 1. Opcodes in instruction set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These instructions can be grouped into two primary categories: arithmetic operations and logic 

operations. We have demonstrated the functionality of these operations in a video featuring the 

DE2 board [8], and additional details regarding the I/O interface are shown in Fig.1. The yellow 

labels indicate the switches used for inputs, the displays of the two operands and the output 

values. 

 

  
 

Fig. 1. Input and output in DE2 FPGA board. 

 

Operation 
Opcode  

Bit 3 Bit 2 Bit 1 Bit 0 

Addition 0 0 0 0 

Subtraction 0 0 0 1 

Multiplication  0 0 1 0 

Integer Division 0 0 1 1 

Shift Left  0 1 0 0 

Shift Right 0 1 0 1 

Rotate Left 0 1 1 0 

Rotate Right 0 1 1 1 

Logic AND 1 0 0 0 

Logic OR  1 0 0 1 

Logic XOR 1 0 1 0 

Logic NOR 1 0 1 1 

Logic NAND 1 1 0 0 

Logic XNOR 1 1 0 1 

Comparison of A > B 1 1 1 0 

Comparison of A = B 1 1 1 1 



As shown in Fig. 1, the switches 0-7 on the right are used to input operands A or B, and their 

selection is controlled by switches 10-11. These two binary numbers are stored in two registers 

and displayed in the LEDs above the switches. In addition, the decoded decimal numbers of A 

and B are displayed in the 7-segment displays. Specifically, the binary number of A is displayed 

in LEDs 0-7, while its decimal value is displayed in the 7-segment displays 4-5, highlighted with 

yellow frames. Similarly, the binary number of B is displayed in LEDs 10-17, and its decimal 

value is displayed in 7-segment displays 6-7 on the left, highlighted with purple frames. The 

Opcode is input from switches 13-17 on the left side. The binary output value is displayed in the 

group of eight LEDs on the right, while its decimal value is displayed in the three 7-segment 

displays 0-2 on the right, highlighted with white frames. 

 

 

Conceptual Design 

 

In terms of CPU design, each operation within the instruction set can be viewed as a separate 

module. The adder is the most frequently utilized component within an ALU, as it is involved in 

numerous operations. Subtraction can be implemented as addition when the subtrahend is 

represented as a negative number in 2’s complement format. Additionally, integer multiplication 

can be achieved through a combination of left shifting and addition/subtraction. To illustrate this 

point, the multiplier can be expressed as the sum of several terms, such as:  5 = 22 +1 or 11 = 23 

+22 – 1. Multiplying by 2n can be accomplished by simply shifting the bits to the left, and then 

the result can be obtained via the addition/subtraction operation. 

 

By implementing each instruction as a separate module, operations can be performed in parallel. 

This means that all 16 results can be obtained once the input data has been processed. To select 

the appropriate output, the control unit simply needs to utilize a 16-1 multiplexer with the 4-bit 

opcodes serving as the selection bits, which is shown in Fig. 2. 

         

  (a)             (b)   

Fig. 2. Control unit implemented with a multiplexer: (a) block diagram and (b) logic circuit. 

 

In Fig. 2, we can see the circuit diagram for the multiplexer mentioned earlier. The 16 input bits 

represent the results from the 16 modules in the ALU, while the opcodes serve as the selection 



bits (
3 2 1 0
, , ,S S S S ) at the bottom of Fig. 2(a). The logic circuit in Fig. 2(b) shows that selection 

is accomplished through the use of AND/OR gates, with two equations from Boolean algebra 

utilized: 0 0X  =  and 0X X+ = . Each AND gate in the circuit has five input bits, one from a 

module in the ALU and four from the selection bits.  

 

For example, the four control bits of the rightmost AND gate are (
3 2 1 0
, , ,S S S S ). If any of the 

selection bits (
3 2 1 0
, , ,S S S S ) is ‘1’, the output of the AND gate will be ‘0’, effectively blocking 

input data. Therefore, the condition for the data D0 to become the output of the multiplexer is 

that the four selection bits are (0 0 0 0), which corresponds to the opcode for addition found in 

Table 1. As such, D0 should be the result of the 8-bit adder. 

 

In the same way, we can see that the second AND gate from the right, with D1 as the data input, 

has the control bits of (
3 2 1 0
, , ,S S S S ). Therefore, D1 can become the output of the multiplexer 

provided the opcode is (0 0 0 1), which corresponds to the operation of subtraction. Similarly, 

each of the 16 opcodes in the instruction set corresponds to a specific AND gate in the circuit, 

and only one of them becomes active for each opcode in the instruction set. 

 

VHDL Design 

 

In this project, the Arithmetic Logic Unit (ALU) and Control Unit (CU) have been combined and 

implemented as a single component named "alu_code" at the top level, shown as a block in the 

middle of the second column in Fig. 3.  

 

Fig. 3. Top Level CPU Circuit 

To the left of the ALU-CU block, there are three input buses, which are connected to two 

registers, A and B, as well as the switches for input machine code. The output bus of the ALU-

CU block is connected to a decoder that converts an 8-bit binary number into a decimal number. 



Since an 8-bit binary number can represent a positive integer between 0 and 255, the decoder on 

the right side of the ALU-CU block is connected to three 7-segment display modules. For 

instance, if the result from the ALU-CU block is 123, the three 7-segment displays will 

respectively show (1-2-3). 

To display the input numbers, the outputs from registers A and B are connected to two decoders 

located above and below the ALU-CU block in Fig. 3. Since the DE2 board has only eight 7-

segment displays, with three reserved for displaying the CPU results, each register (A or B) has 

only two 7-segment displays available for output. Therefore, the third output pin of these two 

decoders is not used. Although the decoders can only display up to 99, the input number range is 

still between 0-255. 

The ALU-CU component is designed by using VHDL, and the entity is shown in Fig. 4. In this 

code, A and B are the two 8-bit inputs from the two input registers, OP represents the 4-bit 

opcode, and O is the 8-bit output. In the architecture, the function of the ALU-CU is 

implemented with a case-statement structure, where each of the 16 opcodes is specified. This can 

be considered as the translation of the instruction set. Using the ieee.numeric_std package, all 

arithmetic operations can be easily handled. 

 

Fig. 4. Interface of ALU-CU module 

Discussion 

 

Although computers and microcontrollers are ubiquitous in modern society, many people, 

including programmers and engineers, do not fully understand how they work. Computer 

architecture is a complex subject, and some attempts to simplify it using a simplified version of a 

CPU [9] are still demanding for most people. This capstone design project offers a 

straightforward approach that can be easily understood by anyone with a basic background in 

digital logic circuits. As a result, it can be integrated into courses on microcontroller and 

computer organization, making it an accessible and valuable teaching tool. 

Due to the limited time available for this capstone project during the pandemic, several features 

of the CPU were not included. For instance, there are various flags that are required for 

conditional jumps, such as zero, carry, negative, and overflow. Furthermore, our CPU is 

designed to work only in the "discrete mode," where the opcodes and data are manually inputted. 



However, a more functional version of the CPU can be created by incorporating an on-board 

clock and memory, which is the topic for a future capstone project. 

Conclusion 

 

As a capstone project, we successfully designed and implemented an 8-bit CPU using the DE2 

FPGA board. The CPU has 16 operations in its instruction set, each defined by a 4-bit opcode. 

With the use of VHDL code, we were able to realize the arithmetic functions of the ALU-CU at 

a higher level, bypassing the need for circuit-level design. We tested all the operations in the 

instruction set and verified the results through the use of the 7-segment displays and LEDs on the 

DE2 board. 
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